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ABSTRACT
Many wireless sensor network applications require knowl-
edge of node placement in order to make sense of sensor
data in a spatial context. Networks of mobile sensors require
position updates for navigation through the sensing region.
The global positioning system is able to provide localization
information, however in many situations it cannot be relied
on, and alternative localization methods are required. We
propose a technique for the localization and navigation of
a mobile robot that uses the Doppler-shift in frequency ob-
served by stationary sensor nodes. Our experimental results
show that, by using observed RF Doppler shifts, a robot with
two-wheel differential steering was able to navigate through
a sensing region with an average localization error of 1.68
meters.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distri-
buted Systems

General Terms
Algorithms, Experimentation, Measurement, Theory

Keywords
Sensor Networks, Doppler Effect, Localization, Navigation

1. INTRODUCTION
Recently, there has been a concerted effort to integrate

mobility into wireless sensor networks (WSNs). Mobile sen-
sor nodes enable dynamic deployment and expand the sens-
ing region [1], minimize energy consumption across the net-
work [2], and can connect sparse networks [3]. Mote-sized
platforms [4], [5], [6] have been developed, as well as larger
mobile platforms [7] that can sense the environment and re-
act to it by performing tasks throughout the sensing region.
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Sensor mobility introduces many new challenges. Among
these, the need for localization is perhaps the most im-
portant. Mobile robots typically employ optical encoders,
sonar, or laser rangefinders that can be used for localiza-
tion and navigation. As mobile devices decrease in size and
cost, these types of positioning sensors become difficult to
implement. Often, the Global Positioning System (GPS) is
cited as the de facto method for sensor node localization.
However, GPS has several pitfalls such as size and cost, and
cannot be relied on in certain sensor network deployments
(i.e., indoors, under dense foliage, on the moon).

Several approaches have been taken to solve the problem
of localization in GPS-less environments. For example, [8]
measures the signal strength of an RF transmission at mul-
tiple base stations to triangulate the node position. In [9], a
map of 802.11 ethernet packet signal strengths is compiled a
priori, and used to determine the location of a mobile entity.

Our approach is based on the radio interferometry method-
ology developed in RIPS [10] and the tracking of mobile
nodes using RF Doppler shifts, developed in dTrack [11].

The Radio Interferometric Positioning System (RIPS) [10]
was developed for localization of low-cost stationary sensor
nodes. Two nodes, a master and an assistant, transmit a
pure sine wave at slightly different frequencies, which in-
terfere, resulting in a low-envelope beat frequency whose
phase can be measured by two receivers at a designated
time. The difference in phase is a linear combination of
the distances between the transmitters and receivers. The
advantage of producing a low-frequency interference signal
is that its period and frequency can be determined using
inexpensive commercial wireless sensor nodes, without the
need for radio hardware modifications.

dTrack [11] is a system for tracking mobile nodes that also
uses the same underlying principle of radio interferometry,
but measures signal frequency rather than phase. Track-
ing is accomplished by observing the Doppler shift in fre-
quency that occurs when the source of a transmitted signal
is moving relative to an observer. Because Doppler shift is
determined by the relative velocity of the transmitter and re-
ceiver, absolute translational velocity of a mobile entity can
be determined using a priori knowledge of the transmitted
frequency and the frequencies observed by stationary sensor
nodes at known positions.

We propose a method for localization and navigation of a
mobile robot based on the methodology used in the dTrack
system. Due to uneven terrain, motor degradation, and slip-
page, robots will often deviate from their intended trajec-



tories. By obtaining Doppler-shifted frequency data from
surrounding stationary nodes, the robot is able to estimate
its actual position and velocity, and make course corrections
to stay on target. In order to accurately navigate using
Doppler-shifted frequency information, we require a control
loop that is capable of transforming the observed frequen-
cies into meaningful position and velocity vectors. Because
we are using low-cost hardware, and due to environmental
factors such as humidity and temperature, we can expect a
certain degree of measurement noise. By filtering this noise,
we can determine our velocity error, which can then be in-
put to a controller to produce updated angular velocities for
each wheel on the robot.

Although we use the same methodology, there are signif-
icant fundamental differences between dTrack and our re-
search. dTrack was designed as a system for tracking mo-
bile objects, such as packages in a warehouse. The mo-
bile objects behave as passive mobile entities in this regard.
The tracking algorithm is run on a PC base station that
is not limited by the resource constraints of typical mote-
sized platforms. On the other hand, our system utilizes the
Doppler-shifted frequency information as feedback to control
the mobile node. Also, our approach requires that the lo-
calization and navigation algorithms be implemented on the
mobile sensor node, within the control loop. One benefit of
our system over dTrack is that the mobile robot is aware of
the angular velocity commands it sends to each wheel, and
can use this information to arrive at a better position and
velocity estimate.

Our experimental results demonstrate that using this tech-
nique, a wheeled mobile robot with differential steering is
able to control its velocity and obtain its position using feed-
back from an anchored network of sensor nodes.

The remainder of this paper is organized as follows. In
Section 2, we describe our system architecture. Our exper-
imental results are then presented in Section 3. Section 4
concludes.

2. SYSTEM ARCHITECTURE
In this section, we describe the design of our localization

and navigation system for mobile sensors.
The sensing region consists of a set of anchored receiver

nodes at known positions, as well as a stationary assistant
transmitter node. The mobile node, also referred to as the
master transmitter, moves around the sensing region, as in
Figure 1. Periodically, the master synchronizes with the
assistant and receiver nodes via a SyncEvent message [12].
The message, which also serves as the synchronization point,
provides a time in the near future for the master and assis-
tant to transmit a signal, and for the receivers to listen for
the transmission. The master and assistant transmit pure
sine waves at frequencies that differ slightly, which generates
an interference signal upon arrival at the receiver antennas
[10]. The nominal interference frequency is 350 Hz, however
the observed frequency will be Doppler-shifted, based on the
velocity of the mobile node, and the relative positions of the
receivers.

The receiver nodes send the observed signal frequencies
back to the master, and the observations are passed through
an Extended Kalman Filter (EKF) [13] in order to arrive at
an estimated robot trajectory in the presence of measure-
ment noise [11]. The output of the filter is the current es-
timate of the robot position, speed, and heading, as well as
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Figure 1: Sensing region for localization and nav-
igation. Dotted curves represent radio wave prop-
agation. The arrow on the master node indicates
direction of travel.

the interference frequency, which are then used to calculate
the trajectory error, based on a reference speed and heading
setpoint. The error is passed to the controller, which out-
puts updated left and right wheel angular velocities. Figure
2 illustrates the navigation system. Each component of the
architecture is presented in detail below.
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Figure 2: The robot navigation system.

2.1 Robot Kinematics
We use the following equations to describe the kinematic

model for our two-wheeled robot with differential steering:

ẋ =
r(ωr + ωl)

2
cosφ (1)

ẏ =
r(ωr + ωl)

2
sinφ (2)

φ̇ =
r(ωr − ωl)

2b
(3)

where x and y constitute the robot position, φ is the head-
ing, r is the wheel radius, b is the distance between the hub
center of the driving wheel and robot axis of symmetry, and
ωr and ωl are the right and left wheel angular velocities,
respectively. The speed of the robot is the magnitude of
the velocity, and in terms of angular velocity is represented

as |v| = r(ωr+ωl)
2

. For simplicity, this model does not take
into account the effect of acceleration. For robots with suffi-
ciently low mass, acceleration does not have a major impact
on the forward kinematics of the system.

2.2 Controller
To arrive at the angular velocities that will keep the robot

on the reference trajectory, we use a controller that takes as
input the speed and heading errors, e|v| and eφ, respectively.
Because φ wraps to 0 at 2π, we shift the heading error to
fall between −π and π:

eφ =

 eφ − 2π if eφ > π
eφ + 2π if eφ < −π
eφ otherwise



The controller contains two PI equations, one for each
error component:

|v|k = Kpe|v| + Ki

∫
e|v|dk (4)

φ̇k = Kpeφ + Ki

∫
eφdk (5)

The PI equations give us the updated robot speed and
angular velocity, however, the robot is commanded by spec-
ifying an angular velocity for each wheel. Consequently, we
convert |v| and φ̇ into individual wheel angular velocities, ωl

and ωr, as follows:

ωl =
|v| − bφ̇

r
(6)

ωr =
|v|+ bφ̇

r
(7)

These angular velocities constitute the robot input, u.
The effect of the above transformation is that both wheels

will be set with an equal base velocity to compensate for the
translational speed error. If heading error exists, the robot
will minimize it by turning one wheel faster than the base
velocity, and the other wheel slower, which will result in the
robot turning in the correct direction as it moves forward.
Note that this is a simplistic controller used in the present
work to demonstrate the feasibility of the navigation system,
and will be replaced with a more robust control logic in
future versions.

2.3 dTrack
A mobile node, T , moves through a sensing region with

velocity
−→
v while transmitting a pure sine wave with fre-

quency ft and wavelength λt = c/ft, where c is the speed
of light. Simultaneously, a stationary node transmits a pure
sine wave at a slightly lower frequency, fa. A receiver node,
Ri, observes the interference signal, with frequency fi, which
is Doppler-shifted. The amount of frequency shift is depen-
dent on the relative speed of T and Ri, and is defined by

fi = f̂ − vi/λt (8)

where f̂ = ft−fa is the interference frequency, and vi is the
relative speed of T with respect to Ri. The relative speed
is the projection of the robot velocity onto the unit position
vector pointing from Ri to T , and can be expressed in the
form given by

vi = vxcos(αi) + vysin(αi) (9)

where αi is the angle of Ri from the viewpoint of T with
respect to the x axis, vx = |v|cosφ, and vy = |v|sinφ.

Once the robot applies the updated angular velocity com-
mands to each wheel motor, dTrack is used to determine
the actual velocity, based on the current robot position and
velocity, and the positions of a set of stationary nodes in
the vicinity of the robot. For a given receiver node i, the
expected Doppler-shifted frequency, fi, is given by

fi = f̂ − 1

λt

|v|((xi − x)cosφ + (yi − y)sinφ)√
(xi − x)2 + (yi − y)2

(10)

In practice, we find that the reported Doppler-shifted fre-
quencies differ from the expected frequencies. Because of
low-cost hardware, we are unable to know the exact trans-
mission frequency, which can vary by as much as 65 Hz be-
tween successive timesteps. The variance is random, and

therefore difficult to approximate (see Section 3.4). We

therefore treat f̂ as an unknown variable. The noisy mea-
surement data is then passed through an EKF in order to
arrive upon a more accurate robot position and velocity.

2.4 Extended Kalman Filter
The Kalman filter is a widely used technique for estimat-

ing the state of a dynamic system based on noisy measure-
ment data. We use the extended Kalman filter [13] because
we are dealing with the non-linear relationship between the
observed frequency and relative velocity (Equation 10). The
EKF linearizes the estimation about the current robot state
by applying the partial derivatives of the process and mea-
surement functions. These functions take the form

Xk = F (Xk−1, uk, wk−1) (11)

zk = h(Xk, vk) (12)

where Xk is the robot state {x, y, |v|, φ, f̂}, zk is the set of
Doppler-shifted frequency measurements fi, and uk is the
process input (which we obtain from the controller), wk is
the process noise with covariance Q, vk is the measurement
noise with covariance R, and k is the current timestep. The
state transition function F that governs the robot is a vector
function and is given by

F =


xk−1 + ∆t r(ωr+ωl)

2
cos(φk−1)

yk−1 + ∆t r(ωr+ωl)
2

sin(φk−1)
r(ωr+ωl)

2

φk−1 + ∆t r(ωr−ωl)
2b

f̂k−1

 (13)

where ∆t is the time elapsed since the last time step. Recall
that ωl and ωr comprise the process input u.

The EKF recursively estimates the robot state in two
phases. The first phase predicts the state at the next time
step based on the state at the previous time step and the
current process input. The second phase adjusts the pre-
diction with actual measurement data obtained during the
current time step. In addition, an error covariance matrix,
P , is maintained, which is a measure of the accuracy of the
estimated state, and is used to update the Kalman gain.
Formally, these two phases are represented as

1. Prediction Phase

X̂−
k = F (X̂k−1, uk, 0) (14)

P−
k = Ak−1Pk−1A

T
k−1 + Q (15)

where X̂−
k and P−

k are the a priori state and covari-
ance estimates for the current time step k, Ak−1 is
the Jacobian of F with respect to Xk−1, and Q is the
covariance of the process noise.

2. Update Phase

Kk = P−
k HT

k (HkP−
k HT

k + R)−1 (16)

X̂k = X̂−
k + Kk(zk − h(X̂−

k , 0)) (17)

Pk = (I −KkHk)P−
k (18)

where K is the Kalman gain, H is the Jacobian of h
with respect to X, R is the covariance of the measure-
ment noise, and I is the identity matrix.



The Jacobian matrices of F and h with respect to X
are given below in Equations (19) and (20). Note that for

H[i,j] =
∂h[i]
∂X[j]

, we only need to calculate the partial deriva-

tive of h once for each column, because successive rows cor-
respond to a different receiver node and can be calculated
analogously.

Ak =


1 0 0 ∆t−r(ωr+ωl)

2
sin(φk) 0

0 1 0 ∆t r(ωr+ωl)
2

cos(φk) 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 (19)

∂hi
∂xk

= − 1
λ
|v|k(yi−yk)((xi−xk)sinφk−(yi−yk)cosφk)

((xi−xk)2+(yi−yk)2)3/2 ,
∂hi
∂yk

= − 1
λ
|v|k(xi−xk)((yi−yk)cosφk−(xi−xk)sinφk)

((xi−xk)2+(yi−yk)2)3/2 ,
∂hi

∂|v|k
= − 1

λ
(xi−xk)cosφk+(yi−yk)sinφk√

(xi−xk)2+(yi−yk)2
,

∂hi
∂φk

= − 1
λ
|v|k(−(xi−xk)sinφk+(yi−yk)cosφk)√

(xi−xk)2+(yi−yk)2
,

∂hi

∂f̂k
= 1

(20)

In [11] it was observed that the EKF did not respond well
to sudden maneuvers of the mobile node, and so the EKF
was combined with a constrained nonlinear least squares al-
gorithm. We are able to avoid this step because the robot
is aware of any maneuvers that are made, and provides this
as input (u) to the EKF.

3. EVALUATION

3.1 Experimental Setup
For this study, Crossbow ExScal motes (XSMs) [14] were

used to control a robot, as well as for the dTrack implemen-
tation. Six motes were placed in a 20 by 30 meter sensing
region (see Figure 5), elevated 1.5 meters from the ground.
Five of these were receivers, and one was the assistant trans-
mitter. The position of the assistant is not important, as
long as it is stationary and the signal it transmits can be
received by the participating receiver nodes. Another mote,
the master transmitter, was fixed to the robot, and com-
municated directly to the robot microcontroller via a serial
connection.

One additional mote was used to host the Kalman fil-
ter. Ideally, EKF functionality would be implemented on
the same node as the controller. However, due to memory
limitations (see Table 3), we made the design decision to use
two nodes. We argue that this does not affect scalability of
the system, and with code optimizations it would be possi-
ble to implement the EKF on the controller node. The EKF
mote was mounted to the robot body and communicated
with the controller node over the wireless radio interface.
Tuning of the EKF was done experimentally, based on of-
fline tests of the robot and dTrack nodes.

The robot was a MobileRobots Pioneer 3DX [7], with r =
9.55 cm and b = 17.78 cm. Note that, although the Pioneer
is equipped with an onboard Linux PC, it was not powered
on for these experiments, and all control operations were
performed by the connected mote. In addition, the robot has
optical encoders on each wheel, however, the measurement
data were not made available to the controller at runtime.
Figure 3 shows the sensor devices we use in our experiments,
and Figure 4 shows our experiment setup.

Receiver node

EKF mote

Master node / 
controller

Robot

Figure 3: Sensor hardware used in our experiments.

Figure 4: Experimental setup.

3.2 Experimental Results
To obtain ground truth, we used measurements from the

onboard optical encoders. In addition, the sensor field was
recorded by video. We ran three sets of experiments. In
Experiment 1, we disabled receiver node feedback, and in-
structed the robot to drive in a 30-meter straight line with-
out making corrections for motor inaccuracies or wheel slip-
page. In Experiment 2, the robot attempted to control its
speed and heading along the same straight-line trajectory
based on feedback from the dTrack system. For Experiment
3, we introduced a 90◦ mid-course maneuver to the robot
trajectory.

Figure 6 illustrates the desired and actual trajectories of
the robot for both the open- and closed-loop sets of straight-
line experiments, as well as for the 90◦ mid-course maneuver.
With each feedback cycle, we recorded the current position,
speed, and heading, and compared these with the desired
values. The average errors are listed in Table 1. For the
maneuver, rather than having the robot come to a stop, ro-
tate, then resume moving in the new direction at the desired
speed, we instructed the robot to maintain its target speed
while performing the turn. This resulted in a 1.23 meter
overshoot of the desired turning point.

vspace0.2in
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Figure 5: Experimental sensing region. Dashed ar-
rows denote reference trajectories.
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Figure 6: Robot trajectory under both closed-loop
and open-loop experiments.

3.3 Implementation Benchmarking
In order to ensure an accurate controller response, our im-

plementation was required to iteratively run within a bound-
ed timeframe. Table 2 displays the average and maximum
execution time observed over 100 feedback cycles. From
these execution times we see that we can provide feedback
to the robot controller at a rate of approximately 1 Hz.

Another implementation benchmark is code size. Table 3
lists the memory requirements for the major components in
our system. For the XSM, we were limited to 4 kB RAM
and 512 kB ROM, resulting in our decision to host the EKF
on a separate mote.

3.4 Discussion
These preliminary results show that our technique works

well for localization and navigation of mobile sensor nodes.
The largest amount of error comes from the estimation of the
interference frequency, f̂ . We see the effects of a variable f̂

Experiment Position
error (m)

Speed er-
ror (m/s)

Heading
error (rad)

1 5.32 0.05 0.167
2 1.68 1.31 0.13
3 1.93 3.91 0.21

Table 1: Average position, speed, and heading er-
ror over 66 measurements for open-loop (OL) and
closed-loop (CL) experiments.

Component Average (ms) Maximum
(ms)

Radio interferom-
etry

360 361

Frequency calcu-
lation

61 116

Routing 266 580
EKF 230 241
PI update 1.3 1.4
Robot control 56 133
Total 974.3 1432.4

Table 2: Execution time of each component.

in Figure 7, in which we plot the Doppler-shifted frequency
error between what was observed by the receiver nodes and
what was expected based on the current robot state and the
interference frequency as estimated by the EKF. The figure
illustrates the degree to which we are unable to estimate the
interference frequency, with error ranging from about zero
to 65 Hz, and an average of 26.41 Hz.
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Figure 7: Doppler shifted frequency error between
observed and expected values.

Our proof-of-concept experiments were conducted in a
non-multipath environment. Adding large obstacles to the
sensing region will affect the observed Doppler shift at the
receivers. The extent of the multipath impact on our navi-
gation system must still be evaluated.

Component RAM (kB) ROM (kB)

Radio interferometry 3.1 45.9
EKF 1.2 22.1
Robot control 0.5 6.7
Total 4.8 74.8

Table 3: Memory requirements of system compo-
nents.



4. CONCLUSION
We have developed a technique for localization and navi-

gation for mobile sensors by using the principles of Doppler
shift and radio interferometry. With feedback at approxi-
mately 1 Hz, we were able to direct a mobile robot along a
30 meter trajectory with an average position error of 1.68
meters. Future work involves waypoint navigation through
a sensor field using Doppler-shifted frequencies, as well as
exploration of our technique in multipath environments.
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