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Abstract—In this paper, we study the resilient diffusion prob-
lem in a network of robots aiming to perform a task by optimizing
a global cost function in a cooperative manner. In distributed
diffusion, robots combine the information collected from their
local neighbors and incorporate this aggregated information
to update their states. If some robots are adversarial, this
cooperation can disrupt the convergence of robots to the desired
state. We propose a resilient aggregation rule based on the notion
of centerpoint, which is a generalization of the median in the
higher dimensional Euclidean space. Robots exchange their d-
dimensional state vectors with neighbors. We show that if a
normal robot implements the centerpoint-based aggregation rule
and has n neighbors, of which at most d n

d+1
e−1 are adversarial,

then the aggregated state always lies in the convex hull of the
states of the normal neighbors of the robot. Consequently, all
normal robots implementing the distributed diffusion algorithm
converge resiliently to the true target state. We also show that
commonly used aggregation rules based on the coordinate-wise
median and geometric median are, in fact, not resilient to certain
attacks. We numerically evaluate our results on mobile multi-
robot networks and demonstrate the cases where diffusion with
the weighted average, coordinate-wise median, and geometric
median-based aggregation rules fail to converge to the true
target state, whereas diffusion with the centerpoint-based rule
is resilient in the same scenario.

Index Terms—Resilient distributed learning and optimization,
resilient aggregation, centerpoint

I. INTRODUCTION

Diffusion strategies enable adaptation and learning over
networks in a distributed manner by exploiting cooperation
among agents that seek to optimize some global cost function
through local interactions. Distributed diffusion usually involves
an adaptation step in which an agent learns from its own
data, and a combination step in which agent aggregates the
information collected from its neighbors. This adaptation-
combination diffusion strategy has proven to be quite effective
in solving distributed optimization problems in various network
applications [1]. In multi-robot systems, distributed diffusion is
useful for problems, such as target localization and tracking [2],
distributed clustering [3], distributed sensing and estimation
[4], and biologically inspired designs for mobile networks [5].

Although the cooperation among agents helps improve the
overall learning performance, the aggregation step in distributed
diffusion is susceptible to attacks where non-cooperative or
adversarial neighbors sharing wrong information can disrupt
the convergence of the algorithm. It has been shown (for both
fixed and adaptive weights) that a single misbehaving agent

can adversely impact the convergence of remaining agents to
the desired target state [6], [7]. Therefore, it is crucial to design
a resilient aggregation rule for distributed diffusion.

Recent studies regarding the resilience of the distributed
learning algorithms [8]–[12] demonstrate the success of median-
based aggregation rules, such as the coordinate-wise median
and geometric median, to Byzantine adversaries. In this paper,
we show that such aggregation rules are not resilient under
certain conditions, especially when the robots’ state vectors are
d-dimensional, where d ≥ 2. The main reason is the inability
of these rules to guarantee that the aggregated state lies in the
convex hull of the normal neighbors’ states, which is crucial
for the convergence of distributed diffusion and consensus
algorithms [1], [13]. For instance, in the coordinate-wise
median approach, resilient aggregation based on the median is
applied separately for each coordinate j ∈ {1, 2, · · · , d} of the
state. This guarantees that the value at the jth coordinate of the
aggregated state lies between the minimum and the maximum
values at the jth coordinate of the states of the normal
neighbors. However, it does not ensure that the aggregated
state (in Rd) necessarily lies in the convex hull of the normal
neighbors’ states, as we discuss in Section V.

To address this issue, we propose a resilient aggregation
rule based on centerpoint, which extends the notion of the
median in higher dimensions [14], [15]. A normal robot having
n neighbors gathers their state vectors (each of which is in
Rd) and then computes a centerpoint of these n points in
Rd. If the number of adversaries in the neighborhood of a
normal robot is at most d n

d+1e − 1, then a centerpoint lies in
the convex hull of points corresponding to the state values of
normal neighbors. Consequently, this property guarantees that
normal robots implementing distributed diffusion converge to
the true target state even in the presence of non-cooperating
and adversarial robots. Our main contributions are:
• We propose an aggregation rule based on centerpoint for

distributed diffusion that guarantees the convergence of the
algorithm to the true model given the number of adversarial
robots in the neighborhood of a normal robot is limited to
d n
d+1e − 1. Here, n is the size of the neighborhood, and d

is the dimension of the state vector of the robots.
• We analyze the resilience and performance in terms of steady-

state mean-square-deviation (MSD) of the centerpoint-based
distributed diffusion. We also discuss the time complexity
of computing a centerpoint.



• We numerically evaluate our results on a mobile adaptive
multi-robot network and compare the proposed centerpoint-
based aggregation rule with the weighted average, coordinate-
wise median, and geometric median-based rules. The simula-
tion results show that our approach is resilient to d n

d+1e − 1
Byzantine robots in the neighborhood, while the other
approaches are not resilient in the same scenarios.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III introduces the distributed
adapt-then-combine diffusion algorithm. Section IV formulates
the resilient distributed diffusion problem. Section V discusses
the resilience of coordinate-wise and geometric median-based
aggregation rules. Section VI introduces the centerpoint-
based aggregation rule, and analyzes the resilient distributed
diffusion with centerpoint-based aggregation. Section VII gives
a numerical evaluation of the results. Finally, Section VIII
concludes the paper.

II. RELATED WORK

The resilient distributed consensus problem is widely studied
in the robotics and control systems community and is very
relevant to the resilient distributed diffusion. The main goal
in resilient distributed consensus is to ensure that all normal
agents in the network, including malicious and non-cooperative
agents, reach an agreement over the values of the state variable
in a distributed manner. The normal agents’ states throughout
the process, as well as the consensus state, must lie in the
convex hull of their initial states, a condition commonly
referred to as the safety condition. For scalar states, the
Weighted-Mean Subsequence Reduced (WMSR) algorithms
[16] and the median-based algorithms [17] guarantees the
resilient convergence in the presence of adversaries under
certain robustness conditions on the underlying network graph.
Different variations of W-MSR algorithm have also been
proposed [18], [19]. The resilient consensus problem is more
challenging when the state vector is in Rd where d ≥ 2.
Although variants of the W-MSR algorithm has been applied
to mobile multi-robot systems for formation control [20] and
flocking [21] applications, such methods cannot guarantee the
resilient vector consensus in fact as we discuss in Section V. To
achieve resilient vector consensus, Tverberg partition [22]–[25]
and centerpoint-based [26] approaches have been proposed.
The approximate Tverberg point-based approach has also been
successfully applied to the resilient multi-robots rendezvous
problem [13].

Another line of related work is the Byzantine resilient
aggregation problems for distributed learning and optimization.
To achieve resilient optimization, one approach is to discard
cooperation with possible Byzantine neighbors. In [7], a
resilient diffusion algorithm has been proposed in which
normal agents discard information from a certain number
of neighbors, which might include Byzantine agents, in the
aggregation step. However, the performance of the algorithm
depends highly on the accurate estimation of the number
of adversarial agents, which is usually unknown. A similar
screening algorithm called Zeno has been proposed in [27]

that ranks the scores of the aggregated gradients as the
measurements of their trustworthiness and discards b largest
scores to achieve resilient aggregation. Moreover, various
majority-based aggregation rules have been used that preclude
states far away from the cluster of the normal agents’ states to
achieve resilient distributed optimization. Well-known majority-
based aggregation rules include coordinate-wise median [10],
geometric median [9], [11], coordinate-wise trimmed mean
[10] and Krum [6]. However, studies have already reported
some of these rules are not resilient to attacks under certain
conditions [28]–[30].

One can also use computation redundancy [31]–[33] to
achieve resilient convergence for distributed learning, which
typically involves coding theory and algorithmic redundancy.
Yet this method is limited to the master-slave network where
one parameter server sends a global model to each node,
which then computes the gradient based on the available data,
and the parameter server then aggregates gradients from all
nodes to update the global model. An example of such a
framework is DRACO [31] in which the parameter server uses
redundant gradients received from nodes to eliminate the effects
of adversarial updates. Another algorithm proposed recently is
the RSA [34] that introduces an `p-norm regularization term
into the objective function for resilience purpose. It eliminates
the effect caused by the magnitudes of malicious messages
sent by the Byzantine nodes. As a result, only the number of
Byzantine nodes influence the model update, thus making it
robust to arbitrary attacks from Byzantine nodes. However, it is
not straightforward to apply this approach to a fully distributed
network.

III. PRELIMINARIES – DISTRIBUTED
ADAPT-THEN-COMBINE DIFFUSION ALGORITHM

In this paper, we use boldface notation to represent random
variables and normal font to represent deterministic quantities.
Notation [N ] := {1, 2, . . . , N}, and ‖ · ‖ represents `2 norm.
The symbol ∗ denotes complex conjugation for scalars and
complex-conjugate transposition for matrices. 1 denotes the
N × 1 vector with all entries equal to one.

Consider a network of agents1 modeled by a directed graph
G = (V, E), where V represents agents and E represents inter-
actions between agents. An edge (l, k) means that agent k ∈ V
can exchange information with j. Each agent should has its own
information, such that (k, k) ∈ E ,∀k ∈ V . The neighborhood
of k is the set of nodes Nk = {l ∈ V|(l, k) ∈ E}. At each
iteration i, agent k has access to a scalar random measurement
dk(i) and an i.i.d regression vector uk,i of size d with zero-
mean and uniform covariance matrix Ru,k , E{u∗k,iuk,i} > 0,
which are related via a linear model of the following form:

dk(i) = uk,iw
o + vk(i). (1)

Here, vk(i) represents a zero-mean i.i.d. additive noise with
variance σ2

v,k and wo denotes the unknown d-dimensional
model vector that agent k attempts to estimate.

1We use the term agent and robot interchangeably.



The objective of each agent is to estimate wo that minimizes
a global objective function of the following form:

min
w

{
Jglob(w) :=

1

N

N∑
k=1

Jk(w)

}
, (2)

where
Jk(w) := E

{
‖dk(i)− uk,iw‖2

}
. (3)

Stochastic gradient descent (SGD) can be used to solve the
objective function (2), where each agent k computes successive
estimates of wo as follows:

wk,i = wk,i−1 − µ∇wk
Jk(wk,i−1)

= wk,i−1 + µu∗k,i[dk(i)− uk,iwk,i−1],

where µ > 0 is the step size.
Instead, the minimization function (2) can also be solved in

a distributed and cooperative manner using diffusion strategies.
The diffusion strategies introduce an aggregation step that
incorporates information gathered from the neighboring agents
into the optimization procedure. One powerful diffusion scheme
is adapt-then-combine (ATC) [1] which optimizes the solution
using the following update:

ψk,i = wk,i−1 +µu∗k,i[dk(i)−uk,iwk,i−1] (adaptation) (4)

wk,i =
∑
l∈Nk

alkψl,i, (combination) (5)

where alk represents the weight assigned to agent l from agent
k that is used to scale the data it receives from l. The weights
satisfy the following constraints:

alk ≥ 0,
∑
l∈Nk

alk = 1, alk = 0 if l 6∈ Nk. (6)

Well-known weighted average-based aggregation rules include
the uniform (alk = 1

|Nk| ), maximum-degree (alk = 1
N ),

relative-variance (alk =
σ−2
v,l∑

m∈Nk
σ−2
v,m

) among others [1], [35].

Weighted average-based diffusion algorithm outperforms the
non-cooperative SGD as measured by the steady-state mean-
square-deviation (MSD) performance [1]. For sufficiently small
step-size, the network performance of non-cooperative SGD is
defined as the averaged steady-state MSD among agents and
can be approximated by

MSDncop , lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖2 ≈
µd

2
· ( 1

N

N∑
k=1

σ2
v,k), (7)

where w̃k,i , wo − wk,i. And for distributed diffusion,
the steady-state MSD performance of each normal agent is
approximately equal to the network MSD and for sufficiently
small step-size is given by

MSDdiff,k ≈ MSDdiff,net =
µd

2
·

(∑
k∈Nk

p2kσ
2
v,k

)
, (8)

where A = {alk, k = 1, 2, . . . , N} is the N×N left-stochastic
combination matrix and p = {pk, k = 1, 2, . . . , N} denotes the

right eigenvector of A that is associated with the eigenvalue
at one and satisfies Ap = p, p>1 = 1, 0 < pk < 1. Consider
the case where A is doubly stochastic for a standard diffusion
network such that A>1 = A1 = 1. Then, the right eigenvector
pk = 1

N and p2k = 1
N2 . This means the effect of diffusion

cooperation is to scale the noise variances by the factors 1
N2 ,

whereas the non-cooperative SGD has the effect of scaling
the noise variances by the factor 1

N , which demonstrates an
N -fold improvement of MSD performance.

IV. PROBLEM FORMULATION

In the aggregation (combination) step of the diffusion
algorithm, an agent gathers and combines the estimates of
its neighbors, some of which could possibly be malicious.
We consider the resilient aggregation problem in distributed
diffusion in the presence of Byzantine agents. We assume
two types of agents in the network, normal and Byzantine.
Normal agents are the ones that interact with their neighbors
synchronously and always update their states (estimates)
according to a prescribed update rule, that is the diffusion
algorithm. Byzantine agents are the ones that can change their
states arbitrarily and do not follow the prescribed update rule.
Moreover, a Byzantine agent can transmit different values to
its different neighbors. For a normal agent k, all agents in its
neighborhood are indistinguishable, that is, k cannot identify
which of its neighbors are Byzantine. The goal of each normal
agent is to achieve resilient convergence formally stated below.

Definition 1. (Resilient convergence) Distributed diffusion is
said to be resilient if

lim
i→∞

wk,i = wo (9)

for every normal agent k in the network, thereby ensuring that
all normal agents converge to the true model.

For aggregation, a simple and most widely used strategy in
diffusion algorithms is to compute a weighted average of the
neighbors’ states. However, a single Byzantine agent can drive
the output of the weighted average-based aggregation to an
arbitrary value as shown in [6, Lemma 1], and hence, prevent
the normal agent from converging to the target state. Moreover,
in case of adaptive weights, time-dependent Byzantine attack
proposed in [7] can disrupt the convergence of normal nodes.

In [1], it is shown that if there is no Byzantine agent
in the network, and each normal agent computes a convex
combination of its neighbors’ states in the aggregation step,
then all normal agents implementing diffusion algorithm ((4)
and (5)) eventually converge to the true target state. In other
words, in the aggregation step if each agent computes a state
that is in the convex hull2 of the states of its (normal) neighbors,
then convergence is guaranteed.

2The convex hull of a set of points P = {w1, w2, . . . , wn} in Rd is
the smallest convex set containing P . Any point win inside the convex
hull of P has the property that win =

∑n
k=1 λkwk , where 0 ≤ λk ≤ 1

and
∑n

k=1 λk = 1. And no point outside of the convex hull has such
representation.



Since normal agents cannot easily detect Byzantine agents,
the objective is to
• design an aggregation rule for a normal agent, which can-

not distinguish between normal and Byzantine neighbors,
such that the aggregated result by the agent is inside the
convex hull of its normal neighbors’ states, and

• show that the diffusion algorithm using this aggregation
rule achieves resilient convergence as defined above.

V. COORDINATE-WISE MEDIAN AND GEOMETRIC MEDIAN
BASED AGGREGATION RULES

Resilient or robust aggregation has been a hot topic in the
field of distributed learning in recent years [8]–[12]. In this
section, we discuss two widely used majority-based aggregation
rules, that is, coordinate-wise median (also known as marginal
median) [10], [36], and geometric median [9], [11]. We
illustrate these rules are not resilient to Byzantine attacks
in certain scenarios as they cannot guarantee the aggregation
result to be inside the convex hull of normal states. First, we
define these notions.

Definition 2. (Coordinate-wise Median (CM)) Let med(·) to be
the one-dimensional median, then the coordinate-wise median
Median(·) of vectors xk ∈ Rd, k ∈ [n] is defined to be
xMed := Median{xk : k ∈ [n]} with the j-th coordinate to
be (xMed)j := med{xjk : k ∈ [n]} for each j ∈ [d].

Definition 3. (Geometric median (GM)) The geometric median
GM(·) of vectors xk ∈ Rd, k ∈ [n] is defined to be
GM{xk, k ∈ [n]} := arg minx∈Rd

∑n
k=1 ‖x− xk‖.

In one dimension, the median has a robustness property, that
is, if more than dn2 e points are in [−r, r] for some r ∈ R, then
the median must also be in [−r, r] irrespective of the location
of other points. This guarantees that as long as majority of the
points are benign, the median is sure to be within the range of
benign points. However, in multiple dimensions, CM of points
in Rd only guarantees that the value at the jth coordinate of
CM is between the minimum and maximum values at the jth

coordinate of benign points, which does not ensure that CM is
necessarily in the convex hull of benign points. Similarly, GM
is not guaranteed to be inside the convex hull of benign points
even if they are in the majority. We illustrate this through an
example in Figure 1, where we have a total of 10 points (in a
plane), of which 3 are Byzantine and 7 are normal. Byzantine
points lie far from the normal points. We then compute the
CM and GM of all the 10 points, and observe that both CM
and GM fall outside the convex hull of normal points.

Thus, for CM and GM based diffusion, Byzantine agents can
send values much smaller (or greater) than the normal values
in each coordinate, and in the worst case, the aggregation
result may fall outside the convex hull of normal points even
when normal agents are in the majority. When this happens,
at the next iteration of the diffusion (step (4)), the estimated
model will be adapted on the basis of this wrong aggregation
result. As time accumulates, this may disturb the convergence
of normal agents and lead them to converge to a different state.
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Fig. 1: Aggregating 10 points using different aggregation rules.

In Section VII, we will further show cases where distributed
diffusion with such aggregation rules fail to converge to the
true state.

VI. RESILIENT DIFFUSION BY CENTERPOINT-BASED
AGGREGATION

In this section, we explain the notion of a centerpoint
and analyze the resilient diffusion using the centerpoint-based
aggregation rule.

A. Centerpoint and Its Resilient Property

Definition 4. (Centerpoint) Given a set S of n points in Rd in
general positions3 where n ≥ d+ 1, a centerpoint p is a point,
not necessarily from S, such that any closed half-space4 of Rd
that contains p also contains at least d n

d+1e points from S.

Intuitively, a centerpoint lies in the "center region" of the
point cloud, in the sense that there are enough points of S on
each side of a centerpoint. A centerpoint extends the notion of
median to higher dimensions, and is an active topic of study
in discrete geometry [15], [37]. For any given set of points
S, the existence of centerpoint is guaranteed by the famous
Centerpoint Theorem (see [14], [38]).

Theorem 1. (Centerpoint Theorem) For any given point set
in general positions in an arbitrary dimension, a centerpoint
always exists.

A centerpoint is not unique, in fact, there can be infinitely
many centerpoints. The set of all centerpoints constitutes the
centerpoint region or simply the center region, which is known
to be closed and convex. We observe that if a normal agent
has at most d n

d+1e − 1 Byzantine agents in its neighborhood,
and the agent aggregates its neighbors’ states by computing
their centerpoint, then the aggregated state essentially lies in
the convex hull of the states of normal neighbors (See Figure 1
for an example). We formalize this in Lemma 1.

Lemma 1. Given a set of n agents with d-dimensional state
vectors, of which any of the F agents can be Byzantine, then

3A set of points in Rd is said to be in general positions if no hyperplane
of dimension d− 1 or less contains more than d points.

4Recall that closed half-space in Rd is a set of the form {x ∈ Rd : aT x ≥
b} for some a ∈ Rd \ {0}.



a centerpoint of the n state vectors always lies in the convex
hull of the state vectors of the normal agents if and only if
F ≤ d n

d+1e − 1.

Proof. For succinctness, we use the term Byzantine points to
denote the state vectors of Byzantine agents, and normal points
to denote the state vectors of normal agents. Let CF be the
convex hull of the F Byzantine points, and CN be the convex
hull of the normal points.

(⇒) Assume that a centerpoint c is not in CN , then there
exists a half-space containing c and all the points in CN , and
hence containing all the normal points. Since there are at least
d n
d+1e + 1 normal points, the other half-space contains less

than d n
d+1e points, which is not possible by the definition of

centerpoint. Therefore, c must lie in CN .
(⇐) Assume F > d n

d+1e − 1, then there exists a set of F
points outside CN such that a centerpoint c /∈ CN . To see this,
consider a set of d+ 1 points arranged in a d-simplex at a unit
distance from each other. Now equally place the remaining
n − d − 1 points in d + 1 tiny balls of radius ε near each
vertex of the simplex such that each ball contains n

d+1 points.5

For sufficiently small value ε, the interior of this simplex is
the centerpoint region because every hyperplane that passes
through the interior of simplex contains at least one vertex (and
all the points placed there) on either side. If all n

d+1 points
near any one of the simplex vertices are Byzantine, then CN
does not contain any point from the interior of the simplex.
Thus, CN doesn’t contain any centerpoint in this case, and the
claim follows.

B. Diffusion with Centerpoint-based Aggregation

Here, we apply the centerpoint-based aggregation into the
diffusion algorithm by replacing the weighted average-based
aggregation step (equation (5)) of distributed diffusion by

wk,i = CP{ψl,i : l ∈ [Nk]},

where CP computes a centerpoint of a set of vectors ψl,i : l ∈
[Nk]. The centerpoint-based distributed diffusion algorithm is
summarized in Algorithm 1.

Algorithm 1: Centerpoint-based distributed diffusion
Input: µ, wk,−1

1 for i > 0 and for every normal robot k do
2 ψk,i = wk,i−1 − µ∇wkJk(wk,i−1)
3 send ψk,i to l ∈ Nk and receive ψl,i from l ∈ Nk

4 wk,i = CP {ψl,i : l ∈ [Nk]}

Next, we analyze the resilient convergence and the steady-
state estimation performance of the proposed algorithm.

C. Convergence Analysis

In order to analyze the convergence of the proposed
algorithm, we assume the cost function Jk : Rd → R is a
differentiable convex function and has unique global minimum

5For simplicity, we assume that n is divisible by d+ 1.

wo ∈ Rd. We also assume Jk to have an L-Lipschitz continuous
gradient formally defined below.

Definition 5. (L-Lipschitz continuous gradient) A differentiable
convex function f is said to have an Lipschitz continuous
gradient, if there exists a constant L > 0, such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x, y.

If f has an L-Lipschitz continuous gradient, then it has the
following property which is referred to as "co-coercivity":

(∇f(x)−∇f(y))>(x− y) ≥ 1

L
‖∇f(x)−∇f(y)‖2,∀x, y.

Given that the number of Byzantine neighbors is less than
d |Nk|
d+1 e for each agent k, where |Nk| is the size of Nk, we

know by Lemma 1 that the result of the centerpoint-based
aggregation for each agent will be in the convex hull of points
corresponding to the normal robots’ states. Based on this fact
as well as the above assumptions about the cost function, the
centerpoint-based distributed diffusion algorithm will converge
to the actual model, thus achieving the resilient convergence
objective in (9). We formalize this below.

Proposition 1. All the normal robots converge to the true
model wo by the centerpoint-based distributed diffusion in
Algorithm 1 with step size µ ∈ (0, 2

L ], if there are F ≤
d |Nk|
d+1 e − 1 Byzantine agents in the neighborhood of a normal

agent k for all k.

Proof. Given that the number of the Byzantine neighbors F ≤
d |Nk|
d+1 e − 1, by Lemma 1, a centerpoint of a set of vectors
ψl,i for l ∈ Nk, is guaranteed to be in the convex hull of ψl,i
for l ∈ N+

k , where N+
k is the set of normal neighbors and

N+
k ⊆ Nk. Thus, the centerpoint-based aggregation result wk,i

and the normal points ψl,i for l ∈ N+
k holds the following:

‖wk,i − wo‖ ≤ max
l∈N+

k

‖ψl,i − wo‖

= max
l∈N+

k

‖wl,i−1 − µ∇wl
Jl(wl,i−1)− wo‖.

(10)
We can express ‖wl,i−1 − µ∇wl

Jl(wl,i−1)− wo‖2 as

‖wl,i−1 − µ∇wl
Jl(wl,i−1)− wo‖2

=‖wl,i−1 − wo‖2 − 2µ∇wl
Jl(wl,i−1)>(wl,i−1 − wo)

+ µ2‖∇wl
Jl(wl,i−1)‖2.

(11)
By the co-coercivity of Jl, it yields

(∇wl
Jl(wl,i−1)−∇wl

Jl(wo))
>

(wl,i−1 − wo)

≥ 1

L
‖∇wl

Jl(wl,i−1)−∇wl
Jl(wo)‖2.

Since ∇wl
Jl(wo) = 0, we obtain

∇wl
Jl(wl,i−1)>(wl,i−1 − wo) ≥

1

L
‖∇wl

Jl(wl,i−1)‖2.



Put it to (11) and given µ ∈ (0, 2
L ], we obtain

‖wl,i−1 − µ∇wl
Jl(wl,i−1)− wo‖2

≤‖wl,i−1 − wo‖2 −
(

2µ

L
− µ2

)
‖∇wl

Jl(wl,i−1)‖2

≤‖wl,i−1 − wo‖2.

Put it to (10), we obtain

‖wk,i − wo‖2 ≤ max
l∈N+

k

‖wl,i−1 − µ∇wl
Jl(wl,i−1)− wo‖2

≤ max
l∈N+

k

‖wl,i−1 − wo‖2.

(12)
Suppose for each iteration i, there exists w̄i for all k such that

w̄i = arg max
wl,i,l∈N+

k

‖wl,i − wo‖2.

Given (12), we have

‖wk,i − wo‖2 ≤ ‖w̄i−1 − wo‖2. (13)

Since k can be any normal robot, let k be the one associated
with w̄i, such that

‖w̄i − wo‖2 ≤ ‖w̄i−1 − wo‖2.

This means w̄i converges towards wo as i→∞. Given (13),
for any k ∈ N+

k , we conclude that wk,i converges to wo.

D. Steady-State Performance Analysis

Compared to the non-cooperative SGD, network cooperation
in general leads to the improved steady-state MSD performance
without Byzantine agents. Therefore, with no Byzantine agents,
centerpoint diffusion achieves better MSD performance as
compared to the non-cooperative SGD. In fact, centerpoint-
based diffusion performs better than the non-cooperative SGD
even if there are Byzantine agents in the network. In each
iteration of the algorithm, the centerpoint-based aggregation
guarantees that the aggregated result is in the convex hull of
normal agents’ estimates, that is, the aggregated result can be
expressed by a weighted sum of all the normal agents’ estimates,
i.e., wk,i =

∑
l∈Nk

alk(i)ψk,i, where 0 ≤ alk(i) ≤ 1 and∑
l∈Nk

alk(i) = 1. Assume the noise variance is uniform
across all normal agents, i.e., σ2

v,k = σ2
v , (k = 1, 2, . . . , N),

and let N+
k denote the normal neighbors of agent k, then we

observe the steady-state MSD performance of the centerpoint-
based diffusion algorithm is better than the non-cooperative
SGD by (7) and (8) as

MSDCP,net −MSDncop,net

=
µd

2
·

 ∑
k∈N+

k

p2kσ
2
v,k −

1

|N+
k |

∑
k∈N+

k

σ2
v,k


=
µd

2
·

 ∑
k∈N+

k

p2k − 1

 · σ2
v < 0,

where
∑
k∈N+

k
p2k < 1 given

∑
k∈Nk

pk = 1 and pk > 0.

Based on the above discussion, the centerpoint-based aggre-
gation rule always achieves better estimation performance than
the non-cooperative SGD. Further, it also outperforms other
aggregation rules which may not achieve resilient convergence
in the presence of Byzantine agents as illustrated in Section V.

E. Time Complexity to Compute a Centerpoint

In two and three dimensions, the time complexity of com-
puting a centerpoint is O(n) [39] and O(n2) [40] respectively.
However, for higher dimensions d > 3, the expected time
bound is O(nd−1) [40], which is impractical for very large
d. Consequently, algorithms are proposed to compute an
approximate centerpoint [41]. For instance, given a set of
n points, of which at most

(
n

dr/r−1

)
are Byzantine and the

remaining are normal points, then using the approximate
centerpoint algorithm in [41], we can compute a point that is
in the convex hull of normal points in time O((rd)d), where
r is any integer greater than 1. By increasing r, the quality
of approximation, and hence the bound on the number of
Byzantine agents improves and approaches n

d .

VII. EVALUATION

In this section, we evaluate the proposed centerpoint-based
aggregation rule for the diffusion algorithm on a mobile
adaptive network in which agents attempt to solve a target
localization problem cooperatively. We show in our experiments
that diffusion with average (alk = 1

|Nk| for l ∈ Nk),
coordinate-wise median (CM), and geometric median (GM)
based aggregation rules fail to converge to the true target wo in
the presence of Byzantine agents, but diffusion with centerpoint-
based aggregation succeeds in the same scenario. Moreover, the
centerpoint-based diffusion achieves better steady-state MSD
performance than non-cooperative SGD with and without the
presence of Byzantine agents.

A. Network Setup

We consider a mobile adaptive network [5] of N agents that
move collectively in pursuit of a target located at wo ∈ Rd.
Suppose the location of agent k at time i is denoted by
xk,i ∈ Rd. The distance between agent k and target at time i
can be expressed as

dok(i) = uok,i(w
o − xk,i), (14)

where uok,i denotes the unit direction vector pointing from
xk,i to wo. Suppose agents have only noisy observations
{dk(i), uk,i} of the distance and the unit direction vector, i.e.,

dk(i) = dok(i) + ndk(i),

uk,i = uok,i + nuk,i,
(15)

where nuk,i and ndk(i) denote noise terms. Here, dk(i) ∈ R and
uk,i ∈ Rd. From (14) and (15), we have

dk(i) = uk,i(w
o − xk,i) + nk(i),

where nk(i) , −nuk,i(wo− xk,i) +ndk(i). Let d̂k(i) , dk(i) +
uk,ixk,i, then the goal is to derive a linear model for variables



{d̂k(i), uk,i} as in equation (1). As a result, agents can rely
on diffusion for the target localization problem.

Two agents are neighbors if they exchange information with
each other. At each iteration i, agent k knows its location
xk,i ∈ Rd and velocity vk,i ∈ Rd, and it can observe its
neighbors’ location xl,i for l ∈ Nk(i). Since agents want to
achieve harmonious motion and collision avoidance [5], they
update the velocity according to the following update rule:

vk,i+1 = λ · h(wk,i − xk,i) + βvgk,i + γδk,i, (16)

where wk,i is the estimate of the target location by k at time
i, vgk,i is the velocity of the center of mass of the network,
λ, β, γ, r are non-negative parameters, and

h(wk,i − xk,i) =

{
wk,i − xk,i, if ‖wk,i − xk,i‖ ≤ s
s · wk,i−xk,i

‖wk,i−xk,i‖ , otherwise

for some positive scaling factor s used to bound the speed in
pursuing the target. Moreover, δk,i is given by

δk,i =
∑

l∈Nk\{k}

(‖xl,i − xk,i‖ − r)
xl,i − xk,i
‖xl,i − xk,i‖

,

where r is a non-negative value.
The first term in (16) relates to the objective of having

the network move towards the unknown target, and the other
two terms suggest that agents should adjust their velocities
to be consistent with the average displacement vector in the
neighborhood while maintaining a distance from their neighbors.
Agents then update their location according to

xk,i+1 = xk,i + ∆t · vk,i+1,

where ∆t represents the time step.
To obtain the velocity, agents need to know the estimation of

the target location wk,i and the velocity of the center of mass
of the network vgk,i, which should be the unique minimizers
of the following cost functions:

Jglob(w) =
∑
k∈N+

E‖d̂k(i)− uk,iw‖2,

Jglob(vg) =
∑
k∈N+

‖vk,i − vg‖2,

where N+ denotes the set of normal agents. The normal agents
use the ATC diffusion algorithm to optimize the above cost
functions. The adaptation steps take the following form:

ψk,i = wk,i + µu∗k,i(d̂k(i)− uk,iwk,i−1),

φk,i = vgk,i−1 + ν(vk,i − vgk,i−1),

where µ and ν are step sizes. The aggregation steps can be
expressed as follows:

wk,i = Aggrw(ψ1,i, ψ2,i, . . . , ψ|Nk|,i),

vgk,i = Aggrv
g

(φ1,i, φ2,i, . . . , φ|Nk|,i),

where Aggrw and Aggrv
g

represent aggregation rules and |Nk|
denotes the size of Nk.

B. Numerical simulation

In our simulation6, we consider a fully connected (complete)
network with 20 agents. We consider a 2-dimensional example
and select wo = (4, 4). The regression vector uk,i has uniform
covariance matrix Ru,k = σ2

u,kI2, σ2
u,k ∈ [0, 1.0] where I2 is

the identity matrix of size 2. The noise variance of distance
σ2
d,k = 5.0,∀k. When the distance to the target is less than 2.0,

both σ2
d,k and σ2

u,k start to decrease linearly as the distance
to the target decreases. The step sizes for updating location
and velocity estimates are µ = ν = 0.05. Further, we select
λ = 0.5, β = 0.5, γ = 0.01, s = 1, r = 1 and ∆t = 0.5s.
The sensing range of agents is 4.0. When the distance between
two agents is larger than the sensing range, the two agents lose
connection.

Centerpoint-based aggregation is resilient up to d 203 e−1 = 6
Byzantine agents. Therefore, we consider the worst case
where six Byzantine agents are present in the network. As
discussed in Section V, Byzantine agents can send false
estimates to make the aggregation results of coordinate-wise
median (CM) and geometric median (GM) based aggregation
rules to be outside the convex hull of the normal agents’
estimates. In our experiments, Byzantine agents continuously
send ψl,i = φl,i = (0, 0) to all the normal agents as their
current estimates. We run the non-cooperative SGD and
diffusion algorithm with average/CM/GM/centerpoint-based
aggregation rules to estimate the state wk,i and the velocity
vgk,i. Figure 2 shows the initial deployment of agents with and
without Byzantine attacks, agents are located in [0, 1]× [0, 1].
Figure 3 shows the final deployment of agents after running
diffusion algorithm with different aggregation rules and non-
cooperative SGD with and without Byzantine attacks. In these
figures, the green star denotes the target location wo = (4, 4),
the red nodes are the Byzantine agents, and the blue nodes
denote the normal agents. Byzantine agents do not change their
location throughout the simulation.

In the case of no attack, we find all the four aggregation
rules—average, CM, GM and centerpoint-based—converge
to the target as shown in Figure 3a. Yet in the presence
of Byzantine agents, only the centerpoint-based diffusion
converges to the target as shown in Figure 3b. Figure 4
illustrates the state estimates as a function of time (number of
iterations). We observe that if there are no Byzantine agents,
all the four diffusion algorithms achieve a better estimation
accuracy than the non-cooperative SGD. However, in the
presence of six Byzantine agents, only the centerpoint-based
diffusion algorithm converges to the target state, whereas
the diffusion algorithm with other aggregation rules fails to
converge to the target. The steady-state MSD performances are
illustrated in Figure 5. We observe that diffusion with all the
four aggregation rules achieve better steady-state MSD than
the non-cooperative SGD under no attack, whereas only the
centerpoint-based diffusion achieves a better steady-state MSD
than the non-cooperative SGD under attack.

6Simulation code can be found in https://github.com/JianiLi/Centerpoint_
resilient_diffusion and video can be found in https://youtu.be/Y9sdOKLKs24.

https://github.com/JianiLi/Centerpoint_resilient_diffusion
https://github.com/JianiLi/Centerpoint_resilient_diffusion
https://youtu.be/Y9sdOKLKs24


(a) No attack (b) With 6 Byzantine agents

Fig. 2: Mobile network’s initial deployment (green star: target,
blue nodes: normal agents, red nodes: Byzantine agents).

(a) No attack

(b) With 6 Byzantine agents

Fig. 3: Mobile network’s final deployment (from left to
right: noncooperative SGD, average/CM/GM/centerpoint-based
diffusion).

C. Simulation on Robotarium testbed

We have also carried out simulations on Robotarium [42],
a multirobot testbed developed at the Georgia Institute of
Technology, to verify our results. The robots are 11 cm wide,
10 cm long, and operate on a 3m x 2m area as shown in
Figure 6. We consider a network of 20 robots that remain fully
connected throughout the simulation. In the case of attack, six
of them are selected to be Byzantine. The target point is set
to be (2.7, 1.7)m. The control parameters are the same as in
Section VII-B.

We evaluated the diffusion algorithm with three different
aggregation rules, including CM, GM, and centerpoint-based
aggregation. Figure 6 shows the initial and final network
deployments using CM/GM/centerpoint-based diffusion. The

(a) No attack

(b) With 6 Byzantine agents

Fig. 4: wk,i (1st dimension) (each line represents the estimates
of a normal agent k). From left to right: noncooperative SGD,
average/CM/GM/centerpoint-based diffusion.
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(b) With 6 Byzantine agents

Fig. 5: Network MSD for different aggregation rules.

(a) No attack

(b) With 6 Byzantine agents

Fig. 6: Network deployment on Robotarium simulator,
from left to right: initial deployment, final deployment for
CM/GM/centerpoint based-diffusion.

normal and Byzantine robots are indicated by yellow and
red colors respectively, and the target location is denoted
by the green star. Byzantine robots remain static and send
(0, 0) estimates of target location and velocity to normal
robots throughout the experiment. We find that without the
attack, robots adopting diffusion with CM/GM/centerpoint-
based aggregation all converge to the target. However, in
the presence of Byzantine agents, only robots adopting the
centerpoint-based diffusion converge to the target, whereas
robots implementing CM or GM based diffusion converge to
somewhere in the middle of the arena.

VIII. CONCLUSION

In this work, we studied resilient aggregation rules for dis-
tributed diffusion. We showed that commonly used coordinate-
wise median and geometric median-based aggregation do not
guarantee resilient convergence for distributed diffusion. We
proposed a centerpoint-based aggregation rule that generalizes
the resilience property of the median into higher dimensions.
The centerpoint-based aggregation rule guarantees that the
diffusion algorithm converges to the true target state if the
number of Byzantine agents in the neighborhood of a normal
agent is less than d n

d+1e, where n is the number of nodes in
the neighborhood, and d is the dimension of the state vector of
the robots. For very large d, exact computation of a centerpoint
is a computationally challenging task. In such cases, we can
use approximate algorithms to compute such a point, which
could reduce the resilience of the diffusion algorithm. For
future work, we aim to explore how we can reduce the time
complexity for resilient aggregation, probably with degraded
learning performance.
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