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ABSTRACT
Safety analysis is important when designing and develop-
ing cyber-physical systems (CPS). An autonomous vehicle
can be described as a complex CPS where the physical dy-
namics of the vehicle interact with the control systems. The
challenge is ensuring safety despite nonlinearities, hybrid dy-
namics, and disturbances as well as complex cyber-physical
interactions. In this paper, we present an approach for the
safety analysis of automotive control systems using multi-
modal port-Hamiltonian systems (PHS). The approach uses
the Hamiltonian function to represent the energy of the safe
and unsafe states and employs passivity to prove that tra-
jectories that begin in safe regions cannot enter unsafe re-
gions. We first apply the approach to the safety analysis of
a longitudinal vehicle dynamics composed with an adaptive
cruise control (ACC) system. We then extend the results
to the safety analysis of a combined longitudinal and lateral
vehicle dynamics composed with an ACC and lane keeping
control (LKC) system. Simulation results are presented to
demonstrate the approach.

1. INTRODUCTION
An autonomous vehicle is an example of a complex cyber-

physical system (CPS) containing physical dynamics and
controllers controlling the speed and steering of the vehi-
cle [17]. An adaptive cruise control (ACC) system controls
the speed of the vehicle and is a hybrid system operating in
two modes, throttle control mode where the throttle angle
is determined and brake control mode where the brake pres-
sure is determined. A lane keeping control (LKC) system
controls the angle of the steering wheel in order to maintain
a desired position on the road. Safe operation is an impor-
tant requirement for a vehicle equipped with an ACC and
LKC system.
The design of the ACC and LKC systems must ensure

that the host vehicle can safely navigate roads. The appear-
ance of a lead vehicle provides an additional constraint for
the ACC in that the host vehicle maintains a desired speed
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depending on the behavior of the lead vehicle. A lead vehi-
cle which suddenly decelerates creates a safety problem for
the host vehicle. The ACC design on the host vehicle must
guarantee that the distance between the lead and host ve-
hicle stay above a minimum threshold. Turns and curves
provide constraints for the LKC in that the host vehicle
must maintain a position in the center of the road. Large
road curvatures create skidding problems for the host ve-
hicle. The ACC and LKC design on the host vehicle must
guarantee that the lateral acceleration does not exceed a
maximum threshold. The challenge considered in this paper
is to prove the safety of an automotive control system con-
sisting of ACC and LKC despite the nonlinearities, hybrid
dynamics, and disturbances present in the system.

The contribution of this paper is an approach for the
safety analysis of CPS such as automotive control systems.
The dynamics of the vehicle and the control systems are de-
scribed using port-Hamiltonian systems (PHS) which gives
the approach the benefit of compositionality. Hybrid behav-
ior is characterized using multi-modal PHS. The approach
represents the safe states of the system using a bounded
from above energy level of the Hamiltonian function. Simi-
larly, the unsafe states of the system are represented using
a bounded from below energy level of the Hamiltonian func-
tion. Passivity is used to prove that as long as the safe and
unsafe energy regions do not overlap, trajectories that begin
within a lower energy level (safe states) cannot terminate
within a higher energy level (unsafe states). The approach
can be applied to any system described as a multi-modal
PHS.

We evaluate the approach by analyzing the safety condi-
tions for two systems. First, we assume a straight road and
consider the longitudinal dynamics and the ACC. We derive
safety conditions for the ACC which ensure that the host ve-
hicle does not collide with a lead vehicle. Second, we assume
a curved road and consider the interactions between the lon-
gitudinal dynamics, lateral dynamics, ACC, and LKC. We
derive safety conditions for the ACC and LKC which ensure
that the host vehicle does not collide with a lead vehicle and
skid off of the road. We use the vehicle parameters, distur-
bances, and safety conditions to select control parameters so
that the closed-loop system is safe. In order to validate the
approach, we present simulation results by implementing the
closed-loop system using Simulink [9] and CarSim [2].

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 presents the energy-
based safety analysis approach applied to multi-modal PHS.
Section 4 applies the safety analysis approach to the longi-
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tudinal dynamics of the vehicle composed with the ACC
system. Section 5 extends the results of Section 4 by in-
cluding the lateral dynamics and LKC system. Section 6
presents the simulation results which show that the closed-
loop system is safe. The paper is concluded in Section 7.

2. RELATED WORK
The theory of PHS is presented in detail in [5]. A PHS

consists of a set of ports (control, interaction, resistive, and
storage) interconnected through a power-conserving Dirac
structure [18]. PHS have significant implications for pas-
sivity, which has been studied extensively for control de-
sign and analysis of nonlinear systems [8]. An important
property of PHS is compositionality, where component PHS
compose with each other through the interaction ports of
their respective Dirac structures. PHS provide a compo-
sitional framework for modeling complex physical lumped-
parameter systems [3].
Barrier certificates, which are similar in structure to Lya-

punov functions, are typically used for the purpose of vali-
dating nonlinear systems with uncertainties [10]. The use of
barrier certificates allows for the validation of a larger class
of continuous-time nonlinear models, including differential-
algebraic systems with uncertain inputs [16]. Barrier cer-
tificates are functions which denote that there are no state
trajectories starting from a given set of initial conditions
that end up in an unsafe region [14].
Barrier certificates are also extended to guarantee safety

of hybrid systems [11]. These barrier certificates are func-
tions of both continuous and discrete states. To prove the
safety of a hybrid system, a barrier certificate is constructed
from a set of continuous state functions where each func-
tion corresponds to a discrete state. Each continuous state
function needs to satisfy the barrier certificate inequalities
in the invariant of the corresponding discrete mode in or-
der to guarantee the safety of the hybrid system. The work
presented in this paper is inspired by the concept of bar-
rier certificates, using the Hamiltonian function as a barrier
between safe and unsafe states. In contrast to a barrier cer-
tificate, the Hamiltonian function is derived from the model.
As the number of controllers added to automobiles in-

crease, automotive CPS become more complex and rigorous
engineering methods are needed to ensure safety [15]. Con-
trol barrier functions have been used in a control design
approach demonstrated for ACC and place constraints on
the host vehicle’s acceleration and deceleration [1]. They
balance the objectives of maintaining a desired host vehicle
velocity and a relative distance above a minimum threshold.
The computation of barrier certificates is challenging and

often computationally expensive [12]. If the dynamic equa-
tions of the system are described as polynomial functions, a
sum of squares programming method can be used to approx-
imate the barrier certificates by characterizing state regions
as semi-algebraic sets and using semi-definite programming
to obtain the optimal solution [13]. The method is restric-
tive because the dynamic equations of many physical sys-
tems cannot be described as polynomial functions.
The approach presented in this paper can be applied to

systems with nonlinearities and hybrid dynamics because
safety is characterized by the Hamiltonian function and the
PHS structure. The inherent passive property of PHS yields
the safety conditions and allows the Hamiltonian function to
function as a barrier certificate.

Figure 1: Generic plant system (with disturbances)
and control system

3. SAFETY ANALYSIS APPROACH
The idea of the approach is to use the energy of the sys-

tem as conditions and constraints in order to show the safety
property of the system. We consider the plant and con-
troller dynamics described by multi-modal PHS. We use the
dynamic equations and Hamiltonian functions to derive the
dynamic equations and Hamiltonian function of the closed-
loop system. We characterize the initial and unsafe regions
using the energy of the Hamiltonian function and show that
the system trajectory cannot enter the unsafe region.

3.1 Multi-Modal PHS
Figure 1 provides a diagram of a generic multi-modal PHS

of a plant system with disturbances connected to a con-
trol system via power ports. Given a plant system with a
Hamiltonian function Hp(xp), continuous states xp ∈ Xp ⊆
Rnp , discrete states sp ∈ Sp, disturbances δ ∈ Ro , and a
control system a Hamiltonian function Hc(xc), continuous
states xc ∈ Xc ⊆ Rnc , and discrete states sc ∈ Sc, where
{np, nc, o} ∈ N4, we can write the set of dynamic equations
of the closed-loop system as an input-state-output multi-
modal PHS with Hamiltonian function H(x) = Hp(xp) +

Hc(xc), continuous states x =
[
xp xc

]T ∈ X = Xp × Xc,

discrete states s =
[
sp sc

]T ∈ S = Sp × Sc, initial states
X0 = Xp0 × Sp0 × Xc0 × Sc0, and discrete transitions T ⊆
(X × S) → (X × S): ẋ = [J(x, s)−R(x, s)] ∂H

∂x
+

[
Lp(xp, sp)

0

]
δ

ζ =
[
LT

p(xp, sp) 0
]

∂H
∂x

(1)

J(x, s) =

[
Jp(xp, sp) −Gp(xp, sp)G

T
c (xc, sc)

Gc(xc, sc)G
T
p(xp, sp) Jc(xc, sc)

]
,

R(x, s) =

[
Rp(xp, sp) 0

0 Rc(xc, sc)

]
,

where Jp(xp, sp) ∈ Rnp×np and Jc(xc, sc) ∈ Rnc×nc are skew-
symmetric interconnection matrices, Rp(xp, sp) ∈ Rnp×np

andRc(xc, sc) ∈ Rnc×nc are symmetric positive semi-definite
damping matrices, Gp(xp, sp) ∈ Rnp×m, Gc(xc, sc) ∈ Rnc×m,
Lp(xp, sp) ∈ Rnp×o, and (δ, ζ) are the input-output pairs
corresponding to the disturbance port.

3.2 Safety Problem
Given a hybrid system represented as (1) with Hamilto-

nian function H(x) and bounded disturbances, the safety
problem is to show that there are no trajectories of the
closed-loop system that reach an unsafe region of the state
space.
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Figure 2: The Hamiltonian function prevents the
trajectory from reaching the unsafe set Xu.

Definition 1. Given a multi-modal PHS (1) and H(x)
with continuous states X = Xp × Xc ⊆ Rnp+nc , discrete
states S = Sp × Sc, initial states Xp0 × Xc0 × Sp0 × Sc0 ⊆
X × S, unsafe states Xpu × Xcu × Spu × Scu ⊆ X × S,
and disturbances ∆ ⊂ Ro, a system trajectory Γ(x(t), s(t)) :
[0, T ] → X×S is unsafe if there exists a positive time instant
T and a finite sequence of discrete transition times 0 ≤ t1 ≤
· · · ≤ tN ≤ T such that Γ(x(0), s(0)) ∈ Xp0×Xc0×Sp0×Sc0

and Γ(x(T ), s(T )) ∈ Xpu ×Xcu × Spu × Scu. The system is
safe if there are no unsafe state trajectories.

3.3 Safety Analysis
We consider the following definitions for initial states,

unsafe states, and guard conditions that specify discrete
mode transitions. For each discrete state s ∈ S, the ini-
tial continuous states are defined as Init(s) = {x ∈ X :
(x, s) ∈ Xp0 × Xc0 × Sp0 × Sc0} and the unsafe continu-
ous states are defined as Unsafe(s) = {x ∈ X : (x, s) ∈
Xpu ×Xcu × Spu × Scu}. Each transition of discrete states
from s ∈ S to s′ ∈ S is associated with the guard condition
Guard(s, s′) = {x, x′ ∈ X : {x, s} → {x′, s′} ∈ T}.
Similar to safety analysis using barrier certificates, the

method in this paper shows that trajectories beginning from
the safe region cannot reach the unsafe region. However, the
barrier certificate typically separates the initial and unsafe
states using its zero level set, while the Hamiltonian function
characterizes the initial and unsafe states using two energy
levels. A canonical coordinate transform Φ is needed to con-
vert the dynamic equations and Hamiltonian function of the
system into a form which shows the actual minimum energy.
Technical details regarding canonical coordinate transforma-
tion of PHS can be found in [7]. The passivity condition
prevents trajectories starting in the safe region from reach-
ing the unsafe region. Figure 2 provides a visual illustration
of the method.

Theorem 1. A multi-modal PHS described by (1) and
H(x), with continuous states x ∈ X, discrete states s ∈ S,
initial states Init(s), unsafe states Unsafe(s), and bounded
disturbances δ ∈ ∆ is safe if the canonical coordinate trans-
formation x = Φ(x) and transformed Hamiltonian function
H(Φ−1(x)) satisfy the following four conditions with α ≤ β

1. H(Φ−1(x)) ≤ α, ∀x ∈ Init(s)

2. H(Φ−1(x)) > β, ∀x ∈ Unsafe(s)

3. ζTδ ≤ ∂H(Φ−1(x))
∂x

T

R(x, s) ∂H(Φ−1(x))
∂x

, ∀{x, δ} ∈ X ×∆

4. H(Φ−1(x)) ≤ α, ∀x ∈ Guard(s, s′)

Proof. Assuming that the Hamiltonian function H(x)
satisfy the four conditions in Theorem 1, yet there exists
a time T ≥ 0, an input δ, and initial states Init(s), and a
trajectory Γ(x(t), s(t)) such that Γ(x(T ), s(T )) ∈ Unsafe(s).
We show that the Hamiltonian function cannot simultane-
ously satisfy the four condition and reach the unsafe region,
thus proving safety by contradiction. The time derivative of
the Hamiltonian functions dH

dt
can be written as:

∂H(x)
∂x

T
ẋ = ∂H(x)

∂x

T
[J(x, s)−R(x, s)] ∂H(x)

∂x

+ ∂H(x)
∂x

T
L(x, s)δ

= ∂H(Φ−1(x))
∂x

T

[J(x, s)−R(x, s)] ∂H(Φ−1(x))
∂x

+ ∂H(Φ−1(x))
∂x

T

L(x, s)δ

= − ∂H(Φ−1(x))
∂x

T

R(x, s) ∂H(Φ−1(x))
∂x

+ ζδ

J(x, s) =
∂Φ

∂x
J(x, s)

∂Φ

∂x

T
∣∣∣∣
x=Φ−1(x)

R(x, s) =
∂Φ

∂x
R(x, s)

∂Φ

∂x

T
∣∣∣∣
x=Φ−1(x)

L(x, s) =
∂Φ

∂x
L(x, s)

∣∣∣∣
x=Φ−1(x)

Condition (3) shows that the system trajectory on the
time interval of [0, T ] is non-increasing, which indicates that
H(x(T )) ≤ H(x(0)). Additionally, condition (4) asserts that
during a discrete transition, the Hamiltonian function will
not jump to an increasing value. These statements, however,
contradict the original assumption that the system states
start at Init(s) and end at Unsafe(s). As a result, we can
conclude that the system is safe. �

4. COLLISION AVOIDANCE
In this section, we consider the safety analysis of a vehi-

cle with ACC following a lead car and maintaining a safe
distance between the vehicles. The goal for the ACC is to
prevent the host car from colliding into the lead car in the
event of rapid deceleration. For simplicity, we consider the
case shown in Figure 3 in which the vehicles are driving on a
straight road, which allows us to omit the lateral dynamics.

4.1 Multi-Modal PHS
Figure 4 shows the multi-modal PHS of the longitudinal

vehicle dynamics connected to the ACC system via power
ports. Disturbances from wind and slope of the road are
modeled as ports attached to the longitudinal vehicle dy-
namics. The longitudinal dynamics contain state variables
of longitudinal momentum px and longitudinal displacement
qx and two control ports (Ta, y1) and (Tb, y2). The longitu-
dinal input force from the throttle, Ta, is a function of the
throttle valve angle θa, Ta = Caθa, where Ca is the ex-
perimental throttle constant. The longitudinal input force
from the brakes, Tb, is a function of the braking pressure Pb,
Tb = CbPb, where Cb is the experimental braking constant.
The outputs of the control ports y1 and y2 are Vx and −Vx,
respectively. The longitudinal dynamics contain two distur-
bance ports whose inputs, δg and δwx are the disturbance
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Figure 3: Lead vehicle and host vehicle on a straight
road

Figure 4: Longitudinal vehicle dynamics and ACC

forces resulting from the slope of the road and longitudinal
wind, respectively. The outputs of the disturbance ports,
ζg and ζwx, are the corresponding power conjugate values.
The longitudinal dynamics has the following Hamiltonian
function:

Hx(qx, px) =
1

2m
p2x + Ux(qx),

wherem represents the mass of the vehicle and Ux(qx) repre-
sents the potential energy. The longitudinal dynamics con-
tain the continuous states {qx, px} ∈ Xk ⊆ R2, initial states
Xk0 ⊆ Xk, inputs {Ta, Tb}, and disturbances {δg, δwx}.

[
q̇x
ṗx

]
=

[
0 1
−1 −Rx

][ ∂Hx
∂qx
∂Hx
∂px

]
+

[
0
Gx

] [
Ta

Tb

]
+

[
0 0
1 1

] [
δg

δwx

]
[
y1
y2

]
=

[
0 GT

x

] [
∂Hx
∂qx

∂Hx
∂px

]T
ζx =

[
0 LT

x

] [
∂Hx
∂qx

∂Hx
∂px

]
(2)

where Gx =
[
1 −1

]
, Rx = a + bpx

m
+ cm

px
, a represents the

tire rolling friction constant, b represents the air resistance
constant, and c represents the static friction constant.
The ACC is connected to the longitudinal vehicle dynam-

ics through the control ports and allows for autonomous
driving by controlling Ta and Tb. The objective of the ACC
is to maintain a desired speed depending on the lead ve-
hicle velocity Vl, which is modeled as a disturbance. If a

lead vehicle is not detected, the desired vehicle velocity is
the driver’s set speed which makes the system behave as a
conventional cruise control system. Assuming that there is
a lead vehicle, the host vehicle’s radar system determines
the speed of the lead vehicle. Figure 3 shows that the rel-
ative distance between the two vehicles is computed using
the lead vehicle velocity, the host vehicle velocity, and the
initial relative distance Xr(0).

Xr(t) =
t∫
0

(Vl − Vx)dτ +Xr(0)

=
t∫
0

(
Vl(τ)− 1

m
px(τ)

)
dτ +Xr(0).

The state variables of the ACC are derived using the lead
vehicle velocity and the desired relative distance Xd = hVl+
S0, where h is the time headway and S0 is the static distance
constant. We compile the state variables into a vector xa =[
xat xab

]T
, where xat =

∫ t

0
((1 + γXr−Xd

Xd
)Vl − Vx)dτ and

xab =
∫ t

0
(Vx − (1 + γXr−Xd

Xd
)Vl)dτ (γ is a constant).

The ACC has hybrid dynamics which is modeled using
discrete variables st and sb, where st is associated with the
throttle control mode and sb is associated with the brake
control mode. The throttle control and brake control modes
cannot be active simultaneously, which eliminates the case
in which both st and sb are active. We also make the as-
sumption that the throttle control and brake control modes
cannot be inactive simultaneously. The guards of the dis-
crete transitions are defined in (3), where h+ and h− are
hysteresis constants introduced to prevent the system from
rapidly alternating between accelerating and decelerating:{

(st, sb) = (1, 0) if (1 + γXr−Xd
Xd

)Vl − Vx ≥ 0, Xr ≥ h+Xd

(st, sb) = (0, 1) if (1 + γXr−Xd
Xd

)Vl − Vx < 0, Xr < h−Xd

(3)
We design the ACC to have the following Hamiltonian

function:

Ha(xa, s) =
1

2
(ktix

2
at + kbix

2
ab),

where kti and kbi are the gains of the Hamiltonian. The
ACC system has continuous states xa ∈ Xa ⊆ R2, discrete
states {st, sb} ∈ Sa, initial states Xa0 × Sa0 ⊆ Xa × Sa,
and discrete transitions Ta ⊆ (Xa × Sa) → (Xa × Sa). Its
input-state-output PHS is described by:{

ẋa = −Ra
∂Ha
∂xa

+Gaua

ya = GT
a

∂Ha
∂xa

+Maua

(4)

where (ua, ya) are the input-output pairs corresponding to
the control port. The parameter matrices are:

Ra =

[
stkt 0
0 sbkb

]
, Ga =

[
stP 0
0 sb

]
,

Ma =

[
stktd 0
0 sbkbd

]
.

where kt and ktd are throttle control gains, and kb and kbd
are brake control gains. P is derived from the inverse engine
map of the vehicle and is a mapping of the ratio of the
acceleration force to Vx.

The standard feedback interconnection of the longitudinal
vehicle dynamics with the ACC system is described using the
power-conserving interconnection ux = −ya and yx = ua.
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The closed-loop system has a Hamiltonian function Hk =
Ha(xa, s) + Hx(qx, px), initial states X0 = Xk0 × Xa0 ×
Sa0, discrete transitions Tk ⊆ (X × Sa) → (X × Sa), and
disturbances {δg, δwx} ∈ ∆g × ∆wx. Its input-state-output
PHS is described by:


q̇x
ṗx
ẋat

ẋab

 = [J̃x − R̃x]


∂H̃x
∂qx
∂H̃x
∂p̂x
∂H̃x
∂xat

∂H̃x
∂xab

+


0 0

1 1

0 0

0 0


[
δg

δwx

]
[
ζg

ζwx

]
=

[
0 1 0 0

0 1 0 0

] [
∂H̃x
∂qx

∂H̃x
∂p̂x

∂H̃x
∂xat

∂H̃x
∂xab

]T
(5)

J̃x =


0 1 0 0

−1 0 −stP sb

0 stP 0 0

0 −sb 0 0

 ,

R̃x =


0 0 0 0

0 Rx + stktd + sbkbd 0 0

0 0 stkt 0

0 0 0 sbkb

 .

4.2 Safety Problem
The control gains can be selected to stabilize the host ve-

hicle velocity to Vl+γ (Xr−Xd)Vl
Xd

[4]. However, stability does

not imply safety. We do not consider the scenario in which
a lead vehicle appears in front of the host vehicle driving
faster than or equal to the host vehicle set speed because
the safety property is trivial since the controller stabilizes
the host vehicle velocity to the set speed indicating that the
relative distance between the two vehicles will not be less
than the initial relative distance. We consider the scenario
in which a lead vehicle appears in front of the host vehicle
driving slower than the host vehicle set speed. In this sce-
nario, the safety property needs to be validated because if
the ACC does not react accordingly and slow the host vehi-
cle to a reasonable speed, a collision may occur. The safety
condition for the longitudinal dynamics asserts that the rel-
ative distance between the two vehicles will never reach a
minimum distance qm. We can represent the unsafe host
vehicle displacement as the set of:

Xku =

qx ∈ R : qx ≥
t∫

0

Vldτ + ql(0) + qm

 , (6)

where ql(0) is the initial displacement value of the lead ve-
hicle. Given (5), the safety condition for the longitudinal
vehicle dynamics and ACC system states that that all pos-
sible trajectories cannot reach the unsafe region described
by (6).

4.3 Safety Analysis
In order to show safety, we make some assumptions re-

garding the parameters of the lead and host vehicle. The
first assumption is that the initial velocity of the lead ve-
hicle is greater than a minimum velocity which depends on
the deceleration of the lead vehicle (al) and the relative dis-
tance between the vehicles. The second assumption is that

the initial relative distance between the vehicles is greater
than a minimum distance which depends on the deceleration
and velocity of the lead vehicle. If the initial velocity of the
vehicle is high compared to the host vehicle velocity, then
the initial relative displacement can be low because the host
vehicle does not need a large distance to react to the lead
vehicle velocity. However, if the initial velocity of the vehicle
is low compared to the host vehicle velocity, then the initial
relative displacement must be high because the host vehicle
needs a larger distance to react to the low lead vehicle ve-
locity. The relationship between the initial relative distance
and the initial vehicle velocities is described in (7).

Xr(0) =
V 2
l (0)

2al
− V 2

x (0)

2V̇x

. (7)

We need the following definitions for initial states, un-
safe states, and guard sets. For each discrete state sa ∈
Sa, the initial continuous states are defined as Init(sa) =
{ (qx, px, xa) ∈ X : (qx, px, xa, sa) ∈ X0 } and the unsafe
continuous states are defined as Unsafe(sa) = { (qx, px, xa)
∈ X : qx ∈ Xku }. Each transition of discrete states from sa
∈ Sa to s′a ∈ Sa is defined using the guard condition Guard
(sa, s

′
a) = { (qx, px, xa), (qx, px, xa)

′ ∈ X : (qx, px, xa, sa)
→ (q′x, p

′
x, x

′
a, s

′
a) }. Safety analysis of the longitudinal dy-

namics uses px = Φ(px) = px − m(1 + γXr−Xd
Xd

)Vl as the

canonical coordinate transformation on the longitudinal mo-
mentum.

We apply Theorem 1 to the composed longitudinal dy-
namics and ACC system. Given initial conditions Init(sa),
we derive the energy bound α as a function of the initial
host vehicle velocity Vx(0), initial relative distance Xr(0),
and initial lead vehicle velocity Vl(0). The initial relative

distance must be greater than or equal to
V 2
l (0)

2al
− V 2

x (0)

2al

where al is the bounded lead vehicle deceleration. Con-
sequently, we restate the first condition of Theorem 1 as
Hk(Φ

−1(px)) ≤ α, ∀x ∈ Init(sa), where

α = m
ktd + kbd

2
(Vx(0)−(1+γ

Xr(0)− hVl(0)− S0

hVl(0) + S0
)Vl(0))

2.

Given the unsafe states Unsafe(sa), we derive the energy
bound β as a function of host vehicle velocity Vx and lead
vehicle velocity Vl. The energy of the transformed Hamil-
tonian function has a maximum value which indicates that
the minimum relative distance has been reached. Conse-
quently, we restate the second condition of Theorem 1 as
Hk(Φ

−1(px)) > β, ∀x ∈ Unsafe(sa), where

β = m
ktd + kbd

2
(Vx − (1− γ)Vl)

2.

Given an initial relative distance greater than qm, α is
less than β, which validates the first two conditions. Given
the disturbances {δg, δwx} ∈ ∆, we must guarantee that the
system trajectory will never begin in Init(sa) and end in
Unsafe(sa). Consequently, we restate the third condition of
Theorem 1 as

ζgδg + ζwxδwx ≤

∂Hk(Φ
−1(px))

∂px

T
∂Φ

∂px
Rx(Φ

−1(px))
∂Φ

∂px

T ∂Hk(Φ
−1(px))

∂px

∀(qx, px, xa, δg, δwx) ∈ X ×∆.
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Discrete transitions between the throttle and brake con-
trol mode must also be taken into account in order to guar-
antee that the system will not transition into Unsafe(sa). We
restate the fourth condition of Theorem 1 as Hk(Φ

−1(px))
≤ α, ∀(qx, px, xa) ∈ Guard(st, sb). In Section 6, the ACC is
designed by selecting control parameters that satisfy these
safety conditions.

5. SKIDDING AVOIDANCE

Figure 5: Diagram of lead vehicle and host vehicle
on a curved road

In this section, we consider the safety problem of a vehi-
cle with both ACC and LKC following a lead car around a
curved road (Figure 5). In addition to maintaining a safe dis-
tance between the vehicles, the host car must also maintain
a lateral acceleration as to not skid off the road. Interac-
tions between the lateral and longitudinal dynamics, which
can be characterized as an interaction structure, contribute
to the lateral acceleration.

5.1 Multi-Modal PHS

Figure 6: Lateral vehicle dynamics and LKC

Figure 6 shows the multi-modal PHS of the lateral vehi-
cle dynamics connected to the LKC system via power ports.
Disturbance from wind is modeled as a port attached to
the lateral vehicle dynamics. The lateral dynamics contain

state variables ql =
[
qy qr

]T
and pl =

[
py pr

]T
, where py

is the lateral momentum, pr is the angular momentum, qy is
the lateral displacement, and qr is the angular displacement.
The lateral dynamics contain a control port (Tl, yl), where
the output of the control port yl is Vy+lfr (lf represents the

length of the vehicle center to the front wheels). The lateral
input force from the steering, Tl, is a function of the steering
angle θs, Tl = 2Cfθs, where Cf is the cornering stiffness of
the front wheels. The lateral dynamics contains a distur-
bance port whose input, δwy, represents a disturbance force
resulting from lateral wind. The output of the disturbance
ports, ζwy, is the corresponding power conjugate value. The
lateral velocity, and yaw rate, are represented by Vx, Vy,
and r, respectively. The lateral dynamics has the following
Hamiltonian function:

Hl(qy, qr, py, pr) =
1

2m
p2y +

1

2I
p2r + Ul(qy, qr),

where I represents the moment of inertia of the vehicle and
Ul(qy, qr) represents the potential energy. The lateral dy-
namics contain the continuous states {ql, pl} ∈ Xl ⊆ R4,
initial states Xl0 ⊆ Xl, input Tl, and disturbance δwy.

[
q̇l
ṗl

]
=

[
0 I
−I −Rl

][ ∂Hl
∂ql
∂Hl
∂pl

]
+

[
0
Gl

]
Tl +

[
0
Ll

]
δwl

yl =
[
0 GT

l

] [ ∂Hl
∂ql

∂Hl
∂pl

]T
ζwl =

[
0 LT

l

] [ ∂Hl
∂ql

∂Hl
∂pl

]T (8)

Rl =

[
W1
Vx

W2
Vx

W2
Vx

W3
Vx

]
,

where Gl =
[
1 lf

]T
and Ll =

[
1 0

]T
. The parameter

constants of Rl are W1 = 2Cf + 2Cr, W2 = 2Cf lf − 2Crlr,
and W3 = 2Cf l

2
f +2Crl

2
r , where Cr is the cornering stiffness

of the rear wheels, lf is the length of the vehicle center to
the front wheels, and lr is the length of the vehicle center to
the rear wheels.

Figure 7: Free-body diagram of the vehicle dynamics

Interactions between the longitudinal and lateral dynam-
ics are a result of the vehicle heading angle being affected by
longitudinal velocity and can be derived by analysis of the
free-body diagram in Figure 7 [15]. The x-component of the
lateral force affecting the longitudinal motion is represented
by dx and its power-conjugate velocity is represented by zx.
The y-component of the longitudinal force affecting the lat-
eral motion is represented by dl and its power-conjugate
velocity is represented by zl.

Figure 8 shows a diagram of the interacting vehicle dy-
namics and the two control systems. The altered equations
(2) and (8), which include the interaction ports (dx, zx) and
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Figure 8: Closed-loop system

(dl, zl), are described by:

[
q̇x
ṗx

]
=

[
0 1
−1 −Rx

] [ ∂Hx
∂qx
∂Hx
∂px

]
+

[
0
Gx

]
ux +

[
0
1

]
dx

+

[
δg

δwx

]
yx =

[
0 GT

x

] [
∂Hx
∂qx

∂Hx
∂px

]T
zx =

[
0 1

] [
∂Hx
∂qx

∂Hx
∂px

]T[
ζg

ζwx

]
=

[
0 LT

x

] [
∂Hx
∂qx

∂Hx
∂px

]T
(9)

[
q̇l
ṗl

]
=

[
0 I
−I −Rl

] [ ∂Hl
∂ql
∂Hl
∂pl

]
+

[
0
Gl

]
Tl +

[
0
Kl

]
dl

+

[
0
Ll

]
δwl

yl =
[
0 GT

l

] [ ∂Hl
∂ql

∂Hl
∂pl

]T
zl =

[
0 KT

l

] [ ∂Hl
∂ql

∂Hl
∂pl

]T
ζwl =

[
0 LT

l

] [ ∂Hl
∂ql

∂Hl
∂pl

]T
(10)

where Kl =
[
1 0

]T
. The interaction between the longi-

tudinal and lateral dynamics is a mapping of velocity to
force, which indicates a gyrator relationship. The gyrator
ratio has units of kg/s which is represented by multiplying
the mass of the vehicle with the yaw rate. The interaction
structure is modeled as a Dirac structure modulated by the
yaw momentum pr:[

dx
dl

]
=

[
0 −mpr

I
mpr
I

0

] [
zx
zl

]
. (11)

The LKC connects with the lateral vehicle dynamics via
the control ports and allows for autonomous driving by con-
trolling Tl. The objective of the LKC is to maintain a de-
sired lateral displacement qd. The control system consists of

ACC, LKC, and an interaction structure. The LKC shares
the control port with the lateral dynamics and its state vari-
able xb = qy−qd is derived using the desired lateral displace-
ment. We design the LKC to have the following Hamiltonian
function:

Hb(xb) =
1

2
ksix

2
b ,

where ksi is the gain associated with the integrator. The
LKC system has continuous states xb ∈ Xb ⊆ R and initial
states Xb0, with dynamic equations as an input-state-output
PHS with direct-feedthrough:{

ẋb = ub

yb = ∂Hb
∂xb

+ ksdub,
(12)

where (ub, yb) are the input-output pairs corresponding to
the control port and ksd is the gain associated with the steer-
ing control. We connect the ACC and LKC using an inter-
action structure, which alters (4) and (12), so that the state
variables and outputs of the speed control are affected by the
state variable of the steering control, and vice versa. The
purpose of the interaction structure is to lower the speed of
the vehicle in the event of a turn by transferring energy from
the ACC to the LKC.

ẋa = −Ra
∂Ha
∂xa

+Gayx +Ka1da1

ux = GT
a

∂Ha
∂xa

+Mayx +Ka2da2[
za1
za2

]
=

[
KT

a1 0
0 KT

a2

] [
∂Ha
∂xa

yx

] (13)


ẋb = yl + db1

Tl = ∂Hb
∂xb

+ ksdyl + db2[
zb1
zb2

]
=

[
1 0
0 1

] [ ∂Hb
∂xb

yl

] (14)

The interaction structure of the control system is repre-
sented by the following Dirac structure:

da1
da2
db1
db2

 =


0 0 Jc 0
0 0 0 Mc

−JT
c 0 0 0

0 −MT
c 0 0



za1
za2
zb1
zb2

 . (15)

The parameters Jc and Mc define how the speed control
and the steering control interact. In order to derive the

closed-loop system, we define the variables q =
[
qx ql

]T
,

p =
[
px pl

]T
, x =

[
xat xab xb

]T
, δ =

[
δg δwx δl

]T
,

and ζ =
[
ζg ζwx ζl

]T
. The closed-loop system has a

Hamiltonian function H̃(q, p, z) = Hx + Hl + Ha + Hb,

continuous states {q, p, x} ∈ X̃, initial states X̃0 = X̃p0 ×
X̃c0 × Sa, discrete transitions T̃ ⊆ (X̃ × Sa) → (X̃ × Sa),
and disturbances δ = {δg, δwx, δwy} ∈ ∆g ×∆wx ×∆wy.

q̇ṗ
ẋ

 =

 0 I 0

−I J̃ − R̃ K̃

0 −K̃T −Q̃




∂H̃
∂q

∂H̃
∂p

∂H̃
∂x

+

0

L̃

0

 δ

ζ =
[
0 L̃ 0

] [
∂H̃
∂q

∂H̃
∂p

∂H̃
∂x

]T (16)
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where J̃ , L̃, R̃, K̃, and Q̃ are defined as:

J̃ =

 0 mpr
I

−Mc −lfMc

−mpr
I

+Mc 0 0

lfMc 0 0

 , L̃ =

1 1 0

0 0 1

0 0 0

 ,

R̃ =

Rx + stktd + sbkbd 0 0

0 mW1
px

+ ksd
mW2
px

+ lfksd

0 mW2
px

+ lfksd
mW3
px

+ l2fksd

 ,

K̃ =

stP sb 0

0 0 −1

0 0 −lf

 , Q̃ =

stkt 0 −Jc

0 sbkb 0
Jc 0 0

 .

5.2 Safety Problem
The control gains can be selected to stabilize the host

vehicle velocity to Vl + γ (Xr−Xd)Vl
Xd

and the lateral displace-

ment to qd [4]. However, stability does not imply safety.
The unsafe states for the lateral momentum are related to
that of the longitudinal momentum because of the interac-
tions between the longitudinal and lateral dynamics. The
inputs to the longitudinal dynamics (Ta and Tb) affect the
lateral dynamics. Similarly, the input to the lateral dynam-
ics (Tl) affects the longitudinal dynamics. This introduces
an additional safety constraint on the system. In order for
the vehicle to operate safely on the road, its lateral acceler-
ation must not exceed a maximum value Am. If the lateral
acceleration exceeds Am, the vehicle will skid. This lateral
acceleration value of the vehicle is affected by the yaw rate
and longitudinal velocity of the vehicle. This interaction be-
tween lateral and longitudinal motion results in an unsafe
region characterized by a set defined as:

Xlu = {px ∈ R, pr ∈ R : pxpr ≥ m2IAm}. (17)

This safety condition indicates that longitudinal and lat-
eral motion are bounded by a hyperbolic relationship. A
large longitudinal momentum results in a lower bound for
the lateral and yaw momentum, and a large lateral and yaw
momentum results in a lower bound for the longitudinal mo-
mentum. Using this safety constraint we must verify that
the product of longitudinal momentum and yaw rate does
not exceed a maximum threshold. Given (16) and H̃(q, p, z),
the safety condition for the vehicle dynamics, ACC system,
and LKC system states that that all possible trajectories
cannot reach the unsafe region described by (6) and (17).

5.3 Safety Analysis
A road can be divided into segments consisting of four

types of road profiles: straight road, decreasing curvature,
constant curvature, and increasing curvature. Of the four
cases the lateral acceleration safety problem is trivial for
the straight road and decreasing curvature cases. A straight
road nullifies the unsafe state set Xlu and a decreasing road
curvature relaxes the safety condition. In order to safely
navigate a curved section of the road, the vehicle must avoid
the unsafe regions of Xku and Xlu. Given a road curvature
of ρ, the yaw momentum required is calculated as pr =
Ipx
m

ρ, which shows the direct relationship between the yaw
momentum and the longitudinal momentum. Additionally,
the road curvature is related to the vehicle slip angle ω and

steering angle θs:

ρ =
cos(ω) tan(θs)

lf + lr
,

ω = arctan(
lr

lf + lr
tan(θs)).

The lateral momentum depends on the longitudinal mo-
mentum, the yaw momentum, and the vehicle slip angle:

py = px sin(
pr
I

+ ω).

Given that ω and pr are directly proportional to ρ, we
can represent the state variable py as a function directly
proportional to px and ρ. We need the following definitions
for initial states, unsafe states, and guard sets. For each
discrete state sa ∈ Sa, the initial continuous states are de-
fined as Init(sa) = {(q, p, x) ∈ X̃ : (q, p, x, sa) ∈ X̃0} and
the unsafe continuous states are defined as Unsafe(sa) =

{(q, p, x) ∈ X̃ : (qx, px, pr) ∈ Xku × Xlu. Each transition
of discrete states from sa ∈ Sa to s′a ∈ Sa is associated
with the guard set Guard(sa, s

′
a) = {(q, p, x), (q, p, x)′ ∈ X̃ :

(q, p, x, sa) → (q′, p′, x′, s′a)}. Safety analysis of the vehicle

dynamics uses Φ̃ as the canonical coordinate transformation
for the momentum variables.pxpy
pr

 =

Φ̃x(px)

Φ̃y(py)

Φ̃r(pr)

 =

 px −m(1 + γXr−Xd
Xd

)Vl −Mcxb

py + ksi(qy − qd) +Mc(xat + xab)
pr + ksi(qr − qd

lf
) +Mc

xat+xab
lf

 .

We apply Theorem 1 to the composed longitudinal dy-
namics, lateral dynamics, ACC, and LKC system. Given
initial conditions Init(sa), we derive the energy bound α̃ as
a function of the initial host vehicle velocity Vx(0), initial rel-
ative distance Xr(0), initial lead vehicle velocity Vl(0), and
initial road curvature ρ(0). Consequently, we restate the

first condition of Theorem 1 as H̃(Φ̃−1(p)) ≤ α̃, ∀(q, p, x) ∈
Init(sa), where

α̃ = m ktd+kbd
2

(Vx(0)− (1 + γXr(0)−hVl(0)−S0
hVl(0)+S0

)Vl(0))
2

+m
2
V 2
x (0) sin

2(ρ(0)Vx(0) + ω(0)) + I
2
ρ2(0)V 2

x (0).

Given the unsafe states Unsafe(sa), we derive the energy

bound β̃ as a function of host vehicle velocity Vx, relative
distance Xr, lead vehicle velocity Vl, and road curvature
ρ. The energy of the transformed Hamiltonian function has
a maximum value which indicates that the maximum lat-
eral acceleration has been reached. Consequently, we re-
state the second condition of Theorem 1 as H̃(Φ̃−1(p)) >

β̃, ∀(q, p, x) ∈ Unsafe(sa), where

β̃ = m ktd+kbd
2

(Vx − (1− γ)Vl − Mc
m

(qy − qd))
2

+m
2
(Vx sin(ρVx + ω) + ksi(qy − qd))

2

+ I
2
(ρVx + ksi(qy − qd

lf
))2.

Given the disturbances {δg, δwx, δwy} ∈ ∆, we must guar-
antee that the system trajectory will never begin in Init(sa)
and end in Unsafe(sa). Consequently, we restate the third
condition of Theorem 1 as

ζgδg + ζwxδwx + ζwyδwy ≤

∂H̃(Φ̃−1(p))

∂(q, p)

T
∂Φ̃

∂p
R̃(Φ̃−1(p))

∂Φ̃

∂p

T
∂H̃(Φ̃−1(p))

∂(q, p)
,
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∀(q, p, x, δg, δwx, δwy) ∈ X̃ × ∆̃.

Discrete transitions between throttle and brake control
mode must also be taken into account in order to guarantee
that the system will not transition into Unsafe(sa). Con-
sequently, we restate the fourth condition of Theorem 1 as
H̃(Φ̃−1(p)) ≤ α̃,∀(q, p, x) ∈ Guard(st, sb) ∪ Guard(sb, st).
In Section 6, the ACC and LKC are designed by selecting
control parameters that satisfy these safety conditions.

6. SIMULATION RESULTS
In this section, we present simulation results to illustrate

the approach. For validation of the PHS model we use a
standard E-class sedan model in CarSim as a reference [2].
We select parameters for the vehicle dynamics so that its
passivity index values match that of the CarSim model [19].
We determine that the parameters of the vehicle dynamics
are a = 0.1 s−1, b = 0.06 m−1, c = 10 m/s2, Cf = 300 N,
lf = 1.4 m, Cr = 200 N, lr = 1.4 m, m = 1650 kg, and
I = 3234 kg m2 [4]. The inverse engine map of the vehicle,
P , can be found in [6]. We then use the vehicle dynam-
ics parameters along with the safety conditions to choose
control parameters (Table 1) so that the vehicle dynamics
will not reach the unsafe regions (6) and (17). The safety
conditions derived in Sections 4 and 5 are valid for vehicle
velocities given a maximum road decline angle of 15 degrees
which corresponds to δg = 4200 N and a maximum lead ve-
hicle deceleration of 5 m/s2 which corresponds to a braking
distance of 50 m from 80 km/hr to 0 km/hr.

Table 1: Table of controller gains
kti kbi kt ktd kb
0.05 0.01 0.1 0.02 0.2
kbd ksi ksd Jc Mc

0.02 40 15 0.2 0.5

Figure 9: Road trajectory

Simulation of the closed-loop system consists of two min-
utes of running time in which the host vehicle follows a lead
vehicle on the road featured in Figure 9. Figure 10 shows
the time range of 0 to 5 s, which is a straight segment of
the road with a zero degree decline. The simulation results
show that the system is safe since the relative distance is
greater than qm = 24 m. The curve radius is large because

Figure 10: Zero degree decline and straight road

Figure 11: Zero degree decline and curved road

the road is relatively straight, so the lateral acceleration is
near zero. Figure 11 shows the time range of 46.5 to 51.5
s, which is a curved segment of the road with a zero degree
decline. The curve radius during this time period decreases,
which corresponds to a non-zero lateral acceleration value.
Safety is ensured because the lateral acceleration is bounded
by Am = 1.2 m/s2.

Figure 12 shows the time range of 54 to 58 s, which is a
straight segment of the road with a fifteen degree decline.
The control parameters of the ACC system are designed to
compensate for disturbances such as road decline, and the
system is safe since the relative distance is greater than qm.
Similar to the time range of 0 to 5 s, the curve radius is
large because the road is relatively straight, so the lateral
acceleration is near zero. Figure 13 shows the time range
of 70 to 75 s, which is a curved segment of the road with
a fifteen degree decline. The simulation results show that
safety conditions are satisfied.

7. CONCLUSION
The approach in this paper addresses the safety problem

for multi-modal PHS given complex interactions, nonlinear-
ities, and hybrid dynamics. The approach ensures the safety
of the system by characterizing safe and unsafe regions using
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Figure 12: Fifteen degree decline and straight road

Figure 13: Fifteen degree decline and curved road

energy levels of the Hamiltonian function and deriving con-
ditions on model and control parameters. We demonstrate
the approach by analyzing the safety conditions of an au-
tomotive control system to prevent collision and skidding.
Simulation results from an automotive control system are
recorded and show the effectiveness of the safety analysis
approach.
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