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ABSTRACT
In this paper, we study the sensor placement problem in urban

water networks that maximizes the localization of pipe failures

given that some sensors give incorrect outputs. False output of

a sensor might be the result of degradation in sensor’s hardware,

so�ware fault, or might be due to a cyber a�ack on the sensor.

Incorrect outputs from such sensors can have any possible values

which could lead to an inaccurate localization of a failure event. We

formulate the optimal sensor placement problem with erroneous

sensors as a set multicover problem, which is NP-hard, and then

discuss a polynomial time heuristic to obtain e�cient solutions. In

this direction, we �rst examine the physical model of the distur-

bance propagating in the network as a result of a failure event, and

outline the multi-level sensing model that captures several event

features. Second, using a combinatorial approach, we solve the

problem of sensor placement that maximizes the localization of

pipe failures by selecting m sensors out of which at most e give

incorrect outputs. We propose various localization performance

metrics, and numerically evaluate our approach on a benchmark

and a real water distribution network. Finally, using computational

experiments, we study relationships between design parameters

such as the total number of sensors, the number of sensors with

errors, and extracted signal features.
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1 INTRODUCTION
Water distribution systems (WDS) are critical infrastructure net-

works that play a momentous role towards the societal well-being.

�e complexity of such systems, comprising of water supply sources,

treatment plants, and pipe networks, is manifested both at the struc-

tural and operational levels. �e expansive nature of WDS make

them susceptible to disruptions, faults, and failures. For instance,

pipe bursts and leakages are inescapable in WDS operations, and

if not timely detected, can cause signi�cant loss of water, result

in service interruptions, damage surrounding property, and can

become a source of introducing contaminants in water distribution

system. �e ability of the water utility to identify and repair failures

in the minimal amount of time is crucial to mitigate the impacts of

pipe failures on water supply.

In this direction, real-time monitoring of the hydraulics, such

as pressure within pipes, through low-cost and high-rate online

sensors enable the timely detection and localization of pipe failures.

Some examples of such real-time monitoring of water pipes are

WaterWise platform in Singapore [29] and PIPENET in Boston, US

[27]. In designing e�cient monitoring systems to localize pipe

bursts and failures, one of the primary issues is to determine the

most e�ective locations to deploy sensors within the network. In

practice, a limited number of sensors are available, and due to

the enormous scale of the networks, measurements can only be

performed at a limited number of locations. To exacerbate the

situation, sensors are error prone, and can give incorrect outputs

due to degradations in sensor hardware or so�ware, or due to cyber

a�acks, which could lead to a false decision regarding the detection

and localization of pipe failures.

In this paper, our goal is to design a sensor placement scheme that
maximizes the localization of pipe bursts under a limited budget and
error prone sensors. In our previous works [1, 23], we presented

e�cient sensor placement designs to maximize localization in WDS
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without considering any sensor errors. Here, we examine the con-

sequences of incorrect sensor observations on the localization of

pipe failures in detail, and present a sensor placement algorithm

that also considers possible errors in sensors’ outputs.

First, we discuss the transient model that characterizes the sys-

tem response to pipe failures that is observable by the sensors. We

also present a multi-level sensing model, in which multiple features

are extracted from the pressure signal and represented as a boolean

string with σ bits. In the case of erroneous sensors, these bits can be

�ipped from their actual values. Second, we formulate the problem

of selecting optimal locations for a given number of sensors, out

of which a certain number of sensors can be erroneous, as a set

multicover (SMC) problem. SMC is a well-known combinatorial

optimization problem, and is known to be NP-hard [9, 28]. We

suggest a greedy heuristic to solve the SMC problem and to �nd the

sensor locations. We state the conditions under which a pipe failure

can always be localized correctly even in the presence of erroneous

sensors. �ird, we compare di�erent sensor con�gurations and

study the dependencies between the localization performances and

design parameters. Application to case studies using a benchmark

and a real water distribution network demonstrate the value of our

approach.

Sensor placement problem for fault detection and localization

appears in the context of many di�erent networked systems, such

as, power and transportation.Various formulations and solution

approaches have been proposed to solve the sensor placement

problem, including integer and mixed integer programming based

methods [3], combinatorial optimization techniques [16, 23], evolu-

tionary algorithms [8], and data-driven approaches [15]. We give

a brief overview of the work most relevant to ours in Section 6.

We note here that our approach is general and can also be applied

to other networks. �e rest of the paper is organized as follows:

In Section 2, we present the fault, sensing, and error models, and

formulate the localization problem. In Section 3, we propose our

solution to the sensor placement problem, and present a number

of metrics to measure the localization performance in Section 4.

We evaluate our approach on two water distribution networks in

Section 5, and give an overview of the related work in Section 6.

Finally, we conclude the paper in Section 7.

2 SYSTEM MODEL AND PROBLEM
A water distribution network has broadly three main components,

water sources, treatment plants, and distribution network consist-

ing of pipes, valves, and pumps etc. �e pipe network is o�en

represented by a graph model, in which links represent the pipes

and nodes represent pipe junctions, waypoints on curved pipes, or

sensor locations (e.g., see [29]). In this section, �rst, we present the

transient model for pipe failures, sensing model, and sensor error

model. �en, we state the sensor placement problem that maxi-

mizes the localization of failures. A list of symbols used throughout

the paper is given in Table 1.

2.1 Transient Model for Pipe Failures in
Water Distribution Systems

Physical failures of the infrastructure, such as pipe bursts, cause

a disturbance in the �ow, which moves through the system as a

Table 1: A list of Symbols.

Symbol Description

m number of sensors

n number of events

σ number of bits in a sensor output

`j failure event at the pipe j

e max. number of sensors that can give errors

Si output of sensor i

S array of sensor outputs S = [S1 · · · Sm]

S̃ array of sensor outputs with errors

H (x ,y) Hamming distance between strings x and y.

pressure wave with very high velocity (500−1400[
m
s ]) [29], known

as water hammer. �e transient system state can be described by

mass and momentum partial di�erential equations formulated as

[30]:

∂h

∂t
+

a2

дA

∂q

∂x
= 0 (1)

1

дA

∂q

∂t
+
∂h

∂x
+

cq |q |

2дDA2
= 0 (2)

where h is the hydraulic head [m], q is the volumetric �ow rate

[
m3

sec ], д is the gravitational acceleration [
m
sec2

], x is distance along

the pipe [m], t is the time [sec], a is the wave speed in the conduit

[
m
sec ], c is a friction factor, D is the pipe diameter [m], and A is the

pipe cross sectional area [m2
].

�e e�ect of a pipe burst at location i can be translated into

boundary conditions using the ori�ce head-�ow relation [30]. Be-

fore the burst occurs, the cross-section area of the ori�ce is equal

to zero and it increases during a burst, as a result we can expect a

sudden change in the hydraulic pressure head. Consequently, the

disturbance caused by a pipe burst can be detected by sensing the

hydraulic pressure.

We use a benchmark network [21] to simulate the pipe failures.

�e system consists of 126 nodes, 168 pipes, one pump, one reser-

voir, and two storage tanks and its layout is shown in Figure 4(a).

�e network has a total pipe length of 37.5 × 10
3
[m], and supplies

a daily demand of 5.15 × 103[m3/day]. Full details of the network

can be found in [21]. Figure 1(a) shows the pressure signals at

three di�erent locations in a network resulting from a simulated

pipe burst. As the pressure wave arrives at a each location a rapid

(< sec) drop in the pressure occurs followed by a gradual return

to previous operating state. Furthermore, we can observe di�erent

arrival times, magnitude, and shape characterizing the pressure

wave at di�erent locations in the network. Figure 1(b) shows the

pressure signals at a single location in a network in response to

simulated bursts at three di�erent pipes in the network. We can

again observe, that each pipe burst produces unique pressure signal.

2.2 Multi-level Sensing Model
�e pressure signal generated as a result of a pipe burst has various

characteristic features including the time of arrival, rate of pressure

drop, and rate of pressure recovery. �ese features can be extracted
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Figure 1: (a) Pressure signals at three selected locations in
the network from a simulated pipe burst. (b) Pressure sig-
nals at selected location in the network from three simu-
lated pipe bursts.

from the signal and can be analyzed to detect and locate pipe bursts.

For instance, if the rate of pressure drop is greater than a certain

threshold value, then the event is detected. By considering multiple

features and thresholds for the signal, the location of the event can

also be identi�ed. For instance, the rate of pressure drop in the

received signal can classi�ed into slow, gradual and rapid depending

on the range within which the actual pressure drop lies.

For the purpose of sensor placement, we consider a discrete

representation of the raw pressure signal. �e pressure signal

received at the sensor within a certain time window is reduced to a

σ -bit boolean string representing a single sensor output. We �rst

extract η signi�cant features from the pressure signal and transform

these features into a boolean string as follows:

LetY = {1, · · · ,η} be the set of extracted features in the transient

signal, and L = {`1, · · · , `n } be the set of events to be localized.

We represent the value of feature y ∈ Y in the signal generated as

a result of event `j by fy (`j ), i.e.,

fy : L −→ R (3)

�e range of fy can be divided into intervals, and a unique σy -bit

boolean string can be associated with each interval. �us, whenever

`j occurs, a unique σy -bit string is generated, denoted by sy (`j ),
that represents the discretized value of the featurey. More precisely,

sy (`j ) =




b1 if β0 ≤ fy (`j ) ≤ β1

b2 if β1 < fy (`j ) ≤ β2

...
...

bv if βv−1 < fy (`j ) ≤ βv

(4)

Here, ∀i ∈ {1, · · · ,v}, bi is a boolean string with σy bits, and

βi ’s ∀i ∈ {0, 1 · · · ,v} are the threshold values of the intervals of fy .

Note that σv is at least dlog
2
ve.

�e output of sensor i as a result of event `j , denoted by Si (`j )
is simply the concatenation of sy (`j )’s for all y ∈ {1, 2, · · · ,η}, i.e.,

Si (`j ) =
[
s1 (`j ) s2 (`j ) · · · sη (`j )

]
(5)

�e array consisting of outputs from m individual sensors in

response to `j is referred to as the signature of event `j , and is

denoted by

S (`j ) =
[
S1 (`j ) S2 (`j ) · · · Sm (`j )

]
(6)

Example. As an example, consider the network in Figure 2 with

ten links of the same length (1000[m]) and eight possible sensors.

�e failure events are the pipe bursts in the middle of pipes. �e

sensor extracts the time of arrival from the signal generated as a

result of an event. Since the pressure transient decays with time as

it travels distance, we assume that a sensor either detects the event

within 1.5[sec] of its occurrence or does not detect at all (assuming

that the velocity of propagation is 700[
m
s ]). Moreover, in the case

of detection, the time of arrival belongs to one of two intervals,

[0 .75][sec] and (.75 1.5][sec]. A sensor output consists of two bits

and has three possible outcomes, [0 0] in the case of no detection,

[1 0] if the time of arrival is in [0 .75][sec], and [1 0] if the time of

arrival lies within the interval (.75 1.5][sec]. �e outputs of sensors

for events {`1, `2, `3, `4} are shown below.

S1 S2 S3 S4 S5 S6 S7 S8

`1

`2

`3

`4

*....
,

1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0

0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0

0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1

+////
-

1 2 3

64 5

87

ℓ1

ℓ2

ℓ3

ℓ4 ℓ5

ℓ6 ℓ8

ℓ7 ℓ9

ℓ10

ℓ6

Figure 2: An example network.

2.3 Sensor Errors
We assume that the sensors are not perfect and can give errors,

which might lead to an incorrect decision regarding the localization

of a pipe burst. By a sensor error, we mean that a single or multiple

bits in the sensor output are �ipped. �us, as a result of an error,

the σ -bit output of a sensor can have any of the 2
σ

possible values.

Note that in reality such e�ects can be introduced due to sensor

degradation, especially since the sensor assembly is a�ached to a

physical infrastructure component that is subject to corrosion, loose

connections, etc. At the same time, sensor errors can be introduced

due to cyber a�acks, in which an a�acker corrupts the actual output

of a sensor a�er compromising the sensor. A sensor with an error

in its output, either due to a faulty hardware or so�ware, or as a

result of a cyber a�ack, is referred to as an erroneous sensor.
In our model, we consider an upper bound on the number of

sensors that can be erroneous, that is, givenm sensors, at most e of

them can be erroneous, and the outputs of erroneous sensors can

be altered arbitrarily. �e output of erroneous sensor i is denoted

S̃i , and the array of all sensors outputs’ containing some erroneous

sensors is denoted by S̃ . �e proposed error model can be used to
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model a class of a�acks in which an a�acker takes control of at

most e sensors and changes their output in any possible way.

2.4 Problem Description
A primary objective of placing sensors within a water network

is to uniquely detect and localize the source of pressure transient

associated with a pipe burst. �e ability to localize pipe bursts

accurately depends on the uniqueness of signatures corresponding

to the link failure events. In the best scenario, sensors are placed

such that the signatures corresponding to all possible events are

unique, and the output of sensors, as a result of some event, always

matches the right signature. �us, in the case of n events, there are

n unique signatures, and the array of sensors’ outputs due to some

event is always the signature of the event. However, in practice, it

is not always possible owing to a number of reasons. For instance,

a limited number of sensors are available, thus, pressure transients

can only be measured at a limited number of locations within a

network. At the same time, sensors might be erroneous, which

may lead to an incorrect decision regarding the location of event.

For instance, in Figure 2, consider that sensors are placed at nodes

1,2,3,6, and 7. In the case of event `3, if sensor at node 3 gives an

incorrect output S̃3 (`3) = [0 1] instead of S3 (`3) = [1 0], then the

pipe burst is incorrectly localized at `4. �us, our �rst problem

is to maximize the localization of events with a limited number

of sensors, some of which might give incorrect outputs. More

precisely, we aim to study,

How to placem sensors, each with a σ -bit output, to maximize the
number of events that can be localized accurately, even if e of the
deployed sensors give errors? At the same time, how can we evaluate
such a sensor placement in water distribution networks?

In our setup, the design parameters that a�ect the localization

performance of the sensor placement are the number of sensors

to be deployed m, the maximum number of erroneous sensor e ,

and the number of output bits σ in a sensor. An interesting con-

sideration here is to study their dependencies on the localization

performance of the sensor placement. For instance, to achieve a de-

sired localization performance with σ -bit sensors, how m changes

with e? Similarly, �xing the number of erroneous sensors and the

number of output bits in a sensor, how does the localization of

events improve by increasing the number of deployed sensors?

More generally, we aim to investigate the following:

What is the trade-o� betweenm,σ , e , and the localization perfor-
mance in the context of sensor placement for fault localization. In
particular, �xing any two variables, what is the relationship between
the remaining two?

We study above problems in the next sections. First, using a

combinatorial se�ing, we reduce the sensor placement problem

with erroneous sensors to a well known combinatorial optimization

problem known as the set multicover problem. �en, we present

heuristics to solve the problem and evaluate our approach.

3 LOCALIZATION OF FAULTS IN THE
PRESENCE OF SENSOR ERRORS

In this section, we present a sensor placement algorithm to local-

ize pipe bursts in water distribution networks. �e algorithm is

resilient to a �xed number of sensor errors. First, we overview the

sensor placement in the case of no erroneous sensors.

3.1 Localization with No Sensor Errors
To localize event `i through S =

[
S1 S2 · · · Sm

]
, it is neces-

sary and su�cient that for every `j,i , there always exists a sensor

output Sk that is di�erent for `i and `j . If for a pair of events

`i and `j , there exists a sensor that gives di�erent outputs, that

is Sk (`i ) , Sk (`j ), then we say that the pair-wise event, denoted
by `i, j is detectable. Consequently, event `i can be uniquely de-

tected and localized if pair-wise events `i, j ∀j , i are detectable.

As an example, consider `1 and `2 in the above example. Since

S2 (`1) , S2 (`2), we can always distinguish between `1 and `2 by

the output of sensor 2. In other words, the pair-wise event `1,2 is

detectable by the sensor 2.

�e localization problem can thus be formulated as a detection

problem with the event space consisting of all pair-wise events `i, j .

Moreover, we de�ne identi�cation score as the fraction of pair-wise
events that are detectable by the sensor outputs. Note that in the case

of no errors, the array of sensors’ outputs is always a signature

corresponding to the event occurred. �e sensor selection problem

to maximize the identi�cation score, and hence to achieve the

maximum localization, can be solved using a well known maximum
coverage problem (e.g., [23]).

De�nition 3.1. (Maximum Coverage Problem (MCP)) Given a set

of elementsU , a collection C of subsets ofU , and a positive integer

m. �e maximum coverage problem is to select the sub-collection

Cs ⊆ C containingm subsets, such that the union of subsets in C

is maximized.

For the localization purpose,U is the set of all pair-wise events

`i, j ,∀i, j ∈ {1, 2, · · · ,n} and i , j; C = {C1, · · · ,Cr } is the collection

of r subsets ofU , each of which corresponds to a particular sensor.

Ci contains all pair-wise events that are detectable by the sensor i .
�e sensor selection problem to maximize the identi�cation score

is to select m subsets (sensors) in C whose union is of maximum

cardinaltiy, and thus, maximizes the number of detectable pair-

wise events. We studied this problem for σ -bit sensors in [1, 23],

wherein we presented algorithms to e�ciently select σ -bit sensors

to maximize the identi�cation score.

3.2 Localization with Sensor Errors
A σ -bit boolean string, representing a single sensor output, can

be considered as one of the possible 2
σ

symbols. �e outputs of

m sensors will then be a string of m such symbols. �e number

of locations at which the two strings of m symbols are di�erent

from each other is referred to as the Hamming distance between

the strings, denoted by H (string 1, string 2). For instance, consider

σ = 2, then there are four possible symbols, a = [0 0], b = [0 1],

c = [1 0], and d = [1 1]. Let m = 3, then the hamming distance

between two strings, [a b c] and [a c d] is two.

Next, we consider a scenario in which a set ofm sensors, each

having a σ -bit output, is deployed. Let S (`i ) and S (`j ) be the sig-

natures corresponding to events `i and `j respectively. Both S (`i )
and S (`j ) consist of boolean strings of length σm (or a string ofm
symbols, where each symbol represents a σ -bit output). Moreover,

we assume that at most e of the m sensors can be erroneous. In
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the case of event `i or `j , an array of sensors’ outputs S̃ (`i ) or

S̃ (`j ), is generated in which at most e sensors give incorrect out-

puts. Let S (`i ) and S (`j ) be the set of all possible S̃ (`i ) and S̃ (`j )

respectively. Now, the question is that given S̃ ∈ S (`i ) ∪ S (`j ),
under what conditions can we distinguish between events `i and

`j correctly through S̃? Or, in other words, when can we correctly

map S̃ to the correct output which is either S (`i ) or S (`j )? To map

(or decode) S̃ to the correct signature, we use the minimum distance

decoding (MDD) principle, in which S̃ is mapped to the signature

that is at the minimum hamming distance from S̃ . Unlike the no

error case, in which `i, j is either detected correctly or not detected

at all, there is another possibility of incorrectly detecting `i, j here.

For instance, S̃ (`i ) generated as a result of event `i is incorrectly

mapped to S (`j ) if

H (S̃ (`i ), S (`i )) > H (S̃ (`i ), S (`j )). (7)

�e following condition ensures that `i, j is always detected

correctly.

Proposition 3.2. A pair-wise event `i, j is always detected cor-
rectly in the presence of e erroneous sensors if and only if the Hamming
distance between the signatures of `i and `j is at least 2e + 1.

Proof. H (S (`i ), S (`j )) ≥ 2e + 1 implies that S (`i ) ∩ S (`j ) = ∅.

�us, H (S̃ (`i ), S (`i )) < H (S̃ (`i ), S (`j )), and therefore, S̃ (`i ) will be

correctly mapped to S (`i ). Similar is true for S̃ (`j ) due to `j . On the

contrary, if H (S (`i ), S (`j )) < 2e + 1, there always exists an output

S̃ (`i ) that satis�es H (S̃ (`i ), S (`i )) ≥ H (S̃ (`i ), S (`j )), and therefore,

is mapped incorrectly.

�

For illustration, consider events {`1, `2, `3}, and outputs of sen-

sors 2, 3, and 4, that is S = [S2 S3 S4] in the example in Section 2.2.

We de�ne the following symbols corresponding to 2-bit outputs:

a = [0 0], b = [0 1], c = [1 0], and d = [1 1]. �e signatures

corresponding to `1, `2, and `3 are S (`1) = [cbb], S (`2) = [bac],

and S (`3) = [cca]. Considering e = 1, the set of all possible out-

puts corresponding to `1, `2, and `3 are shown in Figure 3. Since

H (S (`1), S (`2)) = 3, we haveS (`1)∩S (`2) = ∅. As a result, the pair-

wise event `1,2 is always correctly detected. On the other hand,

H (S (`1), S (`3)) = 2, and S (`1) ∩ S (`3) = {[ccb], [cba]}, which

means that the pair-wise event `1,3 cannot be detected in the case

of sensor outputs [ccb] or [cba].

ccb
cbacbb

abb

bbb

dbb

cbc

cbd cdb
cab

aca

cca

bca dca

caa
cda

ccc

ccd

bbc

bcc

aac

bac

cac dac

bdc
bab

baa

bad

S(ℓ1) S(ℓ3) S(ℓ2)

Figure 3: An example for detecting pair-wise events.

From Proposition 3.2, we know that a pair-wise event `i, j is

always detected correctly if H (S (`i ), S (`j )) ≥ (2e + 1). However,

even if 0 < H (S (`i ), S (`j )) < (2e + 1), then still there exist sen-

sor outputs corresponding to `i and `j for which `i, j is detected

correctly. In fact, greater the hamming distance between S (`i )
and S (`j ), higher will be the number of such outputs resulting in

accurate detection of `i, j . �us, from a given set of sensors, our

objective is to select a subset of m sensors, say A such that the

Hamming distance between the the signatures of events `i and `j ,

∀i, j, is maximized, under the condition that a subset of at most e
sensors can be erroneous. More precisely, if we de�ne

f (`i, j ) =



1 if H (S (`i ), S (`j )) ≥ 2e + 1

H (S (`i ),S (`j ))
2e+1

otherwise.
, (8)

then, our sensor placement problem can be wri�en as

argmax

A

*
,

∑
`i, j f (`i, j )

Total number of pair-wise links

+
-

subject to |A| ≤ m.

(9)

In other words, the goal is to select m sensors such that for

an arbitrary pair of link failures `i and `j , the number of sensors

that have di�erent outputs for `i and `j are as close to (2e + 1) as

possible. For the ease of notation, we call the quantity below as the

identi�cation score of the sensor placement, and denote it by Iд .

Iд =

∑
`i, j f (`i, j )

Total number of pair-wise links

(10)

For e = 0,Iд is exactly same as the identi�cation score de�ned for

the no sensor error case in [23], and the problem in (9) is equivalent

to solving the maximum coverage problem on the pair-wise events.

For e ≥ 1, the setup remains exactly the same. However, instead

of simply covering a pair-wise link failure only once, we need to

cover it at least 2e + 1 times through the selection of sensors.

3.2.1 Sensor Placement Algorithm for Localization with Sensor
Errors. Here, we discuss that the optimal sensor placement problem

to maximize the localization of faults with a given upper bound

on the number of erroneous sensors can be formulated as a well-

studied set multicover problem. First, we de�ne the problem and

state the known results.

De�nition 3.3. (Set Multicover Problem (SMP)) Given a set of

elementsU , a collection C = {C1,C2, · · · ,Cr } of subsetsU , and a

positive integer k . �e SMP is to select a minimum sub-collection

Ck ⊆ C such that for every x ∈ U , we get |Cj ∈ Cs : x ∈ Cj | ≥ k .

For k = 1, the problem is a well known set cover problem, which is

NP-hard and cannot be approximated in polynomial time to within

a factor of (1 − ϵ ) ln |U | for any constant 0 < ϵ < 1 (unless P=NP)

[9]. On the other hand, for any k , SMP can be approximated to

within the factor (1 + lnd ) using a simple greedy approach [28].

Here, d is the size of the largest subset in C. Greedy approach is

the one in which at every step, a subset from C is selected that

covers the maximum number of elements that has not been covered

k times in the previous steps. In [2], a randomized approximation

algorithm with a slight improved performance is presented with an

expected approximation ratio of (1 + o(1)) ln
d
k when d/k is atleast

7.39, and 1 + 2

√
d/k for smaller d/k .

For our sensor placement problem, letXi, j ⊆ L be the set of link

failures that can be detected by the jth output bit of a σ -bit sensor
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when placed at the location (node) i , and Xi = ∪
σ
j=1

Xi, j . Given Xi, j
for all possible sensor locations i ∈ {1, 2, · · · , r }, j ∈ {1, 2, · · · ,σ },
and the maximum number of erroneous sensors e , the objective is

to selectm sensor locations from a set of r possible locations so that

the number of pair-wise link failures that can be detected correctly

in the presence of at most e erroneous sensors is maximized.

A greedy heuristic that approximately solves this problem using

the set multicover formulation is as follows:

(1) For each (sensor) location i , compute Ci, j , which is the set

of pair-wise events detected by the jth output bit of the

sensor placed at the location i . Note that the pair-wise

event `x,y ∈ Ci, j if and only if |{`x , `y } ∩ Xi, j | = 1, that

is either `x ∈ Xi, j , or `y ∈ Xi, j . Next for each i , compute

Ci = ∪
σ
j=1

Ci, j . De�ne C = {C1,C2, · · · ,Cr }.

(2) Iteratively select Ci ∈ C that contains the maximum num-

ber of pair-wise link failures that are not yet covered for

at least k = 2e + 1 times in previous iterations.

(3) Performm such iterations, and select sensors at locations

corresponding to the selected Ci ’s.

For a total of n link failures, the time complexity of the above

greedy heuristic is O (nmk ).
In a given set, the maximum number of sensors that can give

errors is a re�ection of the reliability of sensors in the set. Based on

the fraction of sensors with errors, the sensors in a given set can be

a�ributed to a certain type that can be characterized by the ratio

e/m. An interesting consideration here is the placement of sensors

with di�erent types. In this direction, consider a sensor placement

in which two groups of sensors are placed. �e �rst group has

a total of m1 sensors, out of which at most e1 can be erroneous,

and the second group has a total of m2 sensors with at most e2

erroneous ones. Note that the ratios e1/m1 and e2/m2 might be

di�erent. Assuming that each sensor is a σ -bit sensor, the signature

corresponding to an event `i consists of σ (m1 +m2) bits and can

be divided into two parts S (`i ) = [Sa (`i ) S
b (`i )], where Sa (`i )

and Sb (`i ) are the parts corresponding to the outputs of sensors

outputs in the �rst and second groups respectively. Similarly, the

actual output of sensors as a result of `i has two parts S̃ (`i ) =

[S̃a (`i ) S̃
b (`i )]. Under this setup, we get the following result.

Proposition 3.4. Consider two groups of sensors, denoted by a
and b, where group a containsm1 sensors out of which at most e1 can
be erroneous, and group b containsm2 sensors out of which at most e2

can be erroneous. A pair-wise event `i, j is always detected correctly
if and only if at least one of the following is true

H (Sa (`i ), S
a (`j )) ≥ 2e1 + 1, (11)

H (Sb (`i ), S
b (`j )) ≥ 2e2 + 1. (12)

Proof. For a given `i, j , S (`i ) = [Sa (`i ) S
b (`i )], and S (`j ) =

[Sa (`j ) S
b (`j )], �rst, we observe that S (`i ) ∩S (`j ) = ∅ if and only

if at least one of the above two conditions is true. �en, using the

same argument as in Proposition 3.2, the claim follows directly. �

Given two such groups containing m1 and m2 sensors respec-

tively with e1 and e2 speci�ed. A simple and e�ective sensor place-

ment strategy to maximize the number of pair-wise events that

can be detected correctly can be obtained by running the previous

sensor placement algorithm twice. First, place m1 sensors from

the �rst group that maximize the number of pair-wise events that

are covered by at least 2e1 + 1 sensors. �en, consider only the

pair-wise events that remained uncovered by at least 2e1+1 sensors

in the �rst step. Next, again using the sensor placement algorithm,

placem2 sensors from the other group to maximize the pair-wise

events that are covered by at least 2e2 + 1 sensors. Note that the

step-wise sensor placement strategy can be extended to sensors

divided into any number of groups.

4 LOCALIZATION PERFORMANCE
METRICS

In this section, we propose di�erent metrics along with the gener-
alized identi�cation score in (10) to measure the localization perfor-

mance of the sensor placement. In particular, we de�ne the notions

of good pair-wise events and the localization set size below.

4.1 Detection of Good Pair-wise Events
For a given sensor placement and a �xed number of erroneous

sensors e , the output S̃ (`i ) generated as a result of event `i is at most

e hamming distance away from the signature S (`i ). Consequently,

one of (13), (14), or (15) is always true for a pair of events `i and `j .

H (S̃ (`i ), S (`i )) > H (S̃ (`i ), S (`j )) (13)

H (S̃ (`i ), S (`i )) < H (S̃ (`i ), S (`j )) (14)

H (S̃ (`i ), S (`i )) = H (S̃ (`i ), S (`j )) (15)

For a �xed `i , there are (n − 1) pair-wise events `i, j , which can

be partitioned into three categories based on the outputs corre-

sponding to `i .

(1) Bad pair-wise events – �ese are the pair-wise events for

which there exist some S̃ (`i ) satisfying (13). In other words,

there exists an output corresponding to `i that indicates

the occurrence of `j in the case of event `i , thus detecting

the pair-wise event incorrectly. We denote the fraction of

bad pair-wise events corresponding to `i by B (`i ).
(2) Good pair-wise events – �ese are the pair-wise events

which are always detected correctly. As a result, for any

S̃ (`i ), (14) is always satis�ed. We denote the fraction of

good pair-wise events corresponding to `i by G (`i ).
(3) Neutral pair-wise events – �ese are the pair-wise events

that are neither good, nor bad at the same time. In other

words, there exists an S̃ (`i ) that satis�es (15). We represent

the fraction of such pair-wise events by N (`i ).

If all the events and corresponding outputs are equally likely,

then the probabilities that an arbitrary pair-wise event is bad, good,

or neutral are given by (16), (17), and (18) respectively.

B =
∑
`i

B (`i )/n (16)

G =
∑
`i

G (`i )/n (17)

N =
∑
`i

N (`i )/n (18)
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Along with the generalized identi�cation score, the values of

B, G, and N also measure the quality of sensor placement for

localization. In the best possible case, all pair-wise events are good

ones and G = 1. As a result, one of the goals of sensor placement

is to maximize G and minimize B values.

4.2 Localization Sets and Uncorrectable
Outputs

Under MDD, S̃ (`i ) generated as a result of event `i is mapped to

some signature S (`j ) that is at a minimum Hamming distance from

S̃ (`i ). If h = min

S (`j )
H (S̃ (`i ), S (`j )), then S̃ (`i ) can be mapped to any

signature in

QS̃ (`i )
= {S (`j ) : H (S̃ (`i ), S (`j )} = h}. (19)

If S (`i ) ∈ QS̃ (`i )
, then we say that QS̃ (`i )

is the localization set

of S̃ (`i ). If S (`i ) < QS̃ (`i )
, then S̃ (`i ) is the uncorrectable output.

�e foremost consideration in designing sensor placement with

erroneous sensors is to minimize the number of uncorrectable

outputs. At the same time, it is desired to minimize the cardinality

of localization sets corresponding to sensor outputs. For instance,

consider the case of 1-bit sensors, in which for any `i , there are

e∑
j=0

(
m

j

)
possibilities of S̃ (`i ). Assuming that all outputs are equally

likely, the probability that S̃ (`i ) is uncorrecatble is given by

ES̃ (`i )
=
∆ # of uncorrectable outputs corresponding to `i

e∑
j=0

(
m

j

) . (20)

Assuming that all events and all outputs are equally likely, the

probability of an output to be uncorrectable is given by (21). Sen-

sor placements resulting in smaller values of E are desirable as

compared to the ones resulting in higher values of E.

E =

∑
∀`i

ES̃ (`i )

# of events

(21)

5 NUMERICAL EVALUATION
Here, we evaluate our approach on two water distribution networks.

Water network 1(WN-1) [21] is a benchmark network previously

introduced in Section 2.1, and Water network 2 (WN-2) [12] is a

grid system in Kentucky with 366 pipes, 270 nodes, three tanks, and

�ve pumps, and its layout is shown in Figure 4(b). We consider that

the pressure sensors are placed at the nodes to detect the pressure

signals generated as a result of pipe bursts. For all simulations, a

failure event is a pipe burst occurring at the center of each pipe. �e

detection of transient pressure signal by a sensor is approximated

by a distance threshold model [6, 23], in which the jth output bit

of a σ -bit sensor is 1 if the distance between the location of failure

event and the sensor lies within the interval [ϵj−1 ϵj ]. In the case of

1-bit sensors, ϵ1 = 1000[m], and for the 2-bit sensors the distance

thresholds are ϵ1 = 500[m], ϵ2 = 1000[m]. For both networks

ϵ0 = 0[m]. Assuming that σ -bit sensors can be placed at any of the

nodes within the network, we evaluate our approach using metrics

de�ned in the previous section.

(a) Water network 1 (b) Water network 2

Figure 4: Layout of the water-distribution networks.

Table 2: Comparison of sensor placements for B, G, and N
in water network 1 (m = 30).

B G N

New Base New Base New Base

e = 2 .0781 .0973 .843 .8254 .078 .0773

e = 3 .1603 .201 .7659 .7320 .0738 .067

e = 4 .23 .3214 .6783 .606 0.958 .0726

First, by computing G, B, and N , we compare sensor place-

ment using the proposed approach with the one in which sensor

errors are not considered. We call the approach with e = 0 as the

base case strategy. For the case of water network 1, m = 30, and

e = {2, 3, 4}, the comparison of B, G and N in Table 2 shows that

the proposed approach clearly outperforms the base case, both in

terms of minimizing B and maximizing G. In fact, as e increases,

improvements in terms of reducing the number of bad pair-wise

events and increasing good pair-wise events due to the new ap-

proach become signi�cant. In Figure 5, a comparison of new and

base case approach is shown by plo�ing G as a function of e . Again,

as e increases, the new approach signi�cantly outperforms the base

case approach.

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

e

G

New

Base

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

e

New

Base

(a) Water network 1 (b) Water network 2

Figure 5: G as a function of e form = 30 andm = 60 in water
networks 1 and 2 respectively.

Second, for the sensor placement using the proposed algorithm,

we plot the generalized identi�cation score Iд as a function of e
for water networks 1 and 2 in Figures 6 (a) and (b) respectively.

As expected, for �xedm, Iд decreases with increasing values of e .

At the same time, for a �xed e , sensor placements involving more

sensors result in higher values of Iд .

153153171



ICCPS 2017, April 2017, Pi�sburgh, PA USA W. Abbas et al.

3 6 9 12 15

0.2

0.4

0.6

0.8

1

e

I
д

m = 20

m = 30

m = 40

5 10 15 20 25

0.2

0.4

0.6

0.8

1

e

m = 40

m = 60

m = 80

(a) Water network 1 (b) Water network 2

Figure 6: Iд as a function of number of sensor attacks e for
variousm using the proposed approach.

Table 3: Comparison of uncorrectable outputs (E) in water
network 1.

E (e = 2) E (e = 3)
m New Base New Base

20 0.19 0.253 0.299 0.38

30 0.11 0.16 0.175 0.24

40 0.057 0.11 0.084 0.181

�ird, for sensor placements using the proposed and the base

case strategy, we compare the values of E, as de�ned in (21). We

compute E for variousm and e ∈ {2, 3} in the case of water network

1. �e values are shown in Table 3. For a �xed m, E obtained

using the new approach is always lesser than the one obtained

using the base case approach. Hence, the new approach clearly

outperforms the base case approach in all the cases. Moreover, for

the same m, the di�erence between E values obtained using the

new approach and the base case approach increases with the higher

values of e , thus making the new approach particularly suitable for

the situations involving higher number of sensor errors.

In Figure 7, for both water networks and various values of m,

we illustrate the fraction of outputs having a localization set of a

particular size while considering e = 2. To compute them, we pick

an event `i , and assuming that all corresponding outputs S̃ (`i ) are

equally likely, we compute the fraction of outputs corresponding to

`i that have a localization set of a particular size, say z. We do this

for all events `i , and then take the average, which basically gives

the probability of an output to have a localization set of size z. We

repeat this for all possible values of localization sets’ sizes. �ese

values are plo�ed in Figures 7(a) and (b) for the localization sets of

sizes between 1 and 8. We observe that as the ratio m/e increases,

the number of outputs that have localization sets of smaller sizes

also increase. For instance, in WN-2, the percentage of outputs that

have localization sets of size at most 5 is about 90%, 80%, and 58%

form = 80, 60, and 40 respectively. Similarly, in the case of WN-1,

these percentages are approximately 60%, 52%, and 34% for m = 40,

30, and 20 respectively. Finally, the average localization set sizes in

WN-2 are 2.2 for m = 80, 2.8 for m = 60, 5.1 for m = 40. Similalr, in

WN-1, the average localization set sizes are 4.5 form = 40, 5.2 for

m = 30, and 8.1 form = 20.

Comparison of Sensor Configurations. Next, we discuss the e�ect

of varying the number of sensors m and the maximum number of

erroneous sensors e on the localization performance as measured

by the fraction of good pair-wise events G. We also discuss the

placement of di�erent types of sensors to maximize the localization

of pipe failure events.

First, we plotm as a function of e using 2-bit sensors while �xing

the localization performance G in Figure 8. For both networks,

we observe that m increases (almost) linearly with e , and the ratio

e/m approximately remains the same. For instance, in the case of

water network 2, e/m is about 0.08 and 0.065 for G of 0.85 and 0.9

respectively. Here, e/m, which is the fraction of sensors that can

be erroneous, also re�ects the reliability of a given set of sensors.

A particular value of e/m can be associated with every G. �us,

we can express a reliability speci�cation in terms of e/m, which

if satis�ed, ensures that a particular value of G is achieved. We

note here that the similar trend – constant e/m for a speci�c G – is

observed with sensors having di�erent σ ’s.
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G = .9

2 4 6

20

40

60

80

e

G = .85

G = .9

(a) Water network 1 (b) Water network 2

Figure 8:m as a function of e for �xed G.

Next, in Figure 9, we illustrate variation in G withm for a �xed

e . Asm increases, e/m decreases, and we expect an increase in G,

which is indeed the case. In Figure 10, we illustrate the performance

of sensor placement in terms of G when two di�erent groups of

sensors are used. Here, we �x e1,m1, e2, and plot G as a function of

m2. As an example, consider water network 1 and G = 0.8. From

the plot in Figure 9(a), we see that 26 (2-bit) sensors, out of which

at most 3 can be erroneous, can be placed to achieve the desired

G. At the same time, sensors from two groups; �rst containing 30

sensors with at most 4 erroneous ones, and second containing 12 in

which a maximum of 3 can be erroneous, can be placed to achieve

the same value of G.

6 RELATEDWORK
To make network operations resilient, the problem of placing sens-

ing devices to e�ciently detect and localize events, including faults

and failures, arise in the context of many di�erent networks includ-

ing energy distribution networks, transportation systems, and wa-

ter distribution systems. In the urban water sector, majority of pre-

vious works focused on the sensor placement for detecting potential

contaminants in the water distribution systems. Using determinis-

tic, stochastic, and combinatorial optimization techniques, sensor

placement algorithms were obtained to optimize one or more ob-

jectives such as a�ected population, detection likelihood, expected
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Figure 7: Fraction of overall outputs as a function of sizes of their localization sets
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Figure 9: G as a function ofm for �xed e.
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Figure 10: G as a function ofm2 for a �xedm1 = 12 and e1 = 3.

contaminated water volume, and overall design cost [3, 21, 22].

For leakage detection purposes, model based techniques have been

developed that are mostly employed on the operational side to ef-

fectively utilize available measurements along with the available

system model to determine faults within a system (e.g., [4, 8, 24, 26]).

In contrast, there has been a li�le work on the side of developing

online monitoring systems equipped with sensing devices deployed

within the network to enable remote detection and localization of

pipe failure events [13, 29]. Our approach could be used towards

an online decision support tool that remotely detects and localizes

pipe failure events.

In a general setup, fault localization problems using measure-

ments from sensing devices are closely related to the group testing
problems, which have been studied widely. In group testing, the

objective is to determine a subset of elements that are ‘defective’ in

some way from a set of given elements by asking queries such as if

a group of elements contains any defective element? By collecting

yes/no responses to such queries, the task is to determine the subset

of defective elements through a minimum number of queries or

tests. �e strategy in which all tests are designed a priori before

the start of experiment is known as the non-adaptive group testing
(NAGT), whereas, the one in which each new test is designed by

considering the outcomes of previous tests is known as the adaptive
group testing (AGT) (e.g., see [5, 11]). If n is the total number of

elements out of which at most d are defective, then using the non-

adaptive strategy, at leastm = O ( d2

logd logn) tests (or queries) are

required [7]. Non-adaptive group testing schemes that determine

the defective elements inm = O (d2
logn) are known (e.g., [11, 25]).

In a variant of the problem, a certain number of test outcomes are

allowed to be erroneous, and the problem is referred to as the group
testing with errors, or group testing with unreliable tests, which has

been studied under various error models (e.g., [14, 17–20]).

�e problem in this paper is related to NAGT with errors. Here,

links are the set of elements, failed link is the defective element that

needs to be localized, and each sensor output is a test output since a

sensor output noti�es if the failed link belongs to a certain subset of

links – links that are at a certain distance from the sensor. However,

there is a major di�erence between NAGT with errors and link

failure localization through sensors with possible errors. In NAGT,

any subset of elements can be grouped together to design the most

appropriate tests. However, in link failure localization through

sensors, the links at which failures can be detected by the sensors

cannot be arbitrarily chosen. In fact, the dynamics of the physical

process de�ne the set of links at which failures can be detected by a

particular sensor. �us, unlike general NAGT problem, tests cannot

be arbitrarily designed in terms of grouping elements into tests.

In [10], for the diagnosis of optical link failures, a relevant no-

tion of combinatorial group testing on graphs was de�ned in which

certain constraints were posed to select the elements into tests. As

with our setup in this paper, elements in the test were the links in a
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graph. However, the speci�c conditions to include links in a partic-

ular test were di�erent. In their work, only the links in a sub-tree

that could be traversed at most once in each direction constituted

a test. In contrast to that, in our work, the links included in a test

(sensor) do not have to form a sub-tree. In fact, all links that are at

a certain distance from the node at which the sensor is placed are

included in the corresponding test.

7 CONCLUSIONS
In this paper, we proposed a sensor placement scheme that max-

imized the localization of pipe failure events in water networks.

Instead of assuming that all sensors were perfect and always gave

correct outputs, we considered that a subset of sensors could give

errors. �ese errors could be the result of a�acks on sensors, in

which the a�acker corrupted sensors’ outputs a�er compromising

them, or errors could be the result of degradation in sensor hard-

ware or so�ware. Using combinatorial se�ing, we posed the sensor

placement problem as a set multicover problem, and presented a

greedy heuristic to solve the problem. We compared our sensor

placement solution to the one that did not consider any sensor

errors, and observed signi�cant improvements in the localization

performance. Further, we explored trade-o�s between the total

number of sensors, number of erroneous sensors, and the number

of output bits in a sensor on the localization performance by per-

forming numerical experiments on two water distribution networks.

Our approach could be used to design a decision support tool for

water utilities to detect and localize faults in an online manner.
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