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ABSTRACT
In this paper, we study local interaction rules that enable a network
of dynamic agents to synchronize to a common zero-input state
trajectory despite the malicious influence of a subset of adversary
agents. The agents in the networked system influence one another
by sharing state or output information according to a directed, time-
varying graph. The normal agents have identical dynamics mod-
eled by linear time-invariant (LTI) systems that are weakly stable,
stabilizable, and detectable. The adversary agents are assumed to
be omniscient and can take any uniformly continuous state or out-
put trajectory. We design dynamic state and output control laws
under the assumption that there is either an upper bound on the
number of neighbors that may be adversaries, or an upper bound on
the total number of adversary agents in the network. The control
laws use only local information (i.e., information from neighbors in
the network) and are resilient in the sense that they are able to mit-
igate the malicious influence of the adversary nodes and facilitate
asymptotic synchronization of the normal agents. The conditions
on the network topology required for the success of the synchro-
nization control laws are specified in terms of network robustness.
Network robustness is a novel topological property that codifies the
notion of sufficient redundancy of directed edges between subsets
of nodes in the network.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.1.1 [Models and Principles]: Systems and Information
Theory—General Systems Theory; C.4 [Performance of Systems]:
Fault tolerance

General Terms
Algorithms, Security, Theory
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1. INTRODUCTION
Synchronization, like consensus, is a group objective where the

agents seek to agree on their state values. Synchronization differs
from consensus in the fact that the state values dynamically change
in the absence of influence from neighboring agents in the network.
Whereas consensus is an agreement process on values, synchro-
nization is an agreement process on the underlying dynamics. Most
often, synchronization phenomena arise in physical or biological
systems where complex interactions in the coupled dynamics of
the underlying physical processes cause the agents to synchronize.
At times this behavior is undesirable and even harmful, such as
the synchronization that occurs in the brain of an epileptic patient.
Other times, synchronization is explicitly sought, and appropriate
control laws or algorithms are designed to drive the agents to syn-
chrony [23, 31].

A major challenge in the synchronization objective in multi-agent
networks is the design of local coupling rules (controllers) that fa-
cilitate synchronization of the agents’ dynamics. One aspect to this
challenge is the hybrid dynamics that result from complex and dy-
namic interaction topologies (due to intermittent network link fail-
ures, mobility of the agents, or environmental factors). The con-
tinuous agent dynamics combined with the discrete dynamics of
the switching network topologies results in a switched system. Of
course, this is a common issue with consensus objectives. A second
aspect, unique to synchronization, is the complication of nonlinear,
possibly chaotic, agent dynamics [24]. Further, if the agents are not
identical, then synchronization to common dynamics may not even
be feasible, e.g., if the individual agents have no common equilib-
rium and a synchronization manifold does not exist [31]. Instead,
in these cases, the error dynamics of each agent with respect to the
average dynamics should be bounded near the origin [31].

Another major challenge is achieving synchronization resiliently
in the presence of compromised nodes, or adversaries. It is not dif-
ficult to imagine the damage that could be caused by an adversary
insinuated into a networked multi-agent system with synchroniza-
tion algorithms that are not resilient. Instead of losing only the
infected nodes, the entire networked system could be destroyed.
Therefore, the formulation of resilient synchronization problems
and the design of controllers that ensure resilience are of utmost
importance.

In this paper, we introduce a resilient asymptotic synchroniza-
tion (RAS) problem for the case when the normal agents are linear
time-invariant (LTI) systems. It is assumed that each LTI system is
weakly stable, stabilizable, and detectable. The goal is for each
normal agent to asymptotically synchronize to a common, safe,
zero-input solution of the system despite the influence of adversary
agents. The adversaries studied here are omniscient, but are limited
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in how they are able to influence the normal agents.1 Specifically,
the adversary agents cannot be duplicitous and the signals shared
must satisfy certain continuity assumptions. Further, we assume an
upper bound either on the number of neighbors that may be adver-
saries, or on the total number of adversary agents in the network.
Resilient synchronization controllers are designed for the case of
full-state and output feedback. In the case of output feedback, a
Luenberger observer is used to construct an estimate of the full
state.

The main update rule of the Adversarial Robust Consensus Pro-
tocol (ARC-P), introduced in [13] and extended in [14, 16], is used
as part of the resilient synchronization controllers in order to en-
sure resilience to adversaries. The main results provide sufficient
conditions on the network topology under which RAS is achieved
even for a class of dynamically switching network topologies. The
class of network topologies are those that have sufficient robust-
ness, which is a novel topological property that captures the no-
tion of sufficient redundancy of directed edges between subsets of
nodes [15, 16, 30].

The rest of the paper is organized as follows. Section 2 describes
some related work. Section 3 defines the system model, the normal
agent dynamics, the adversary model, and the RAS problem state-
ment. Section 4 reviews several topics used in the resilient control
design and analysis, including ARC-P, a modified Jordan form that
is useful for the resilient control laws, and network robustness. Sec-
tion 5 describes the controllers and provides the analysis showing
the resilience of the control laws to the influence of the adversaries.
Finally, Section 6 concludes the paper.

2. RELATED WORK
The research most closely related to this work is the synchroniza-

tion results of [23] and the resilient consensus results of [13,14,16,
30]. In [23], synchronization of identical linear systems is studied
under similar assumptions on the normal agents. However, in [23],
it is assumed that all agents cooperate in the synchronization pro-
cess (i.e., all agents are normal). Here we remove this assump-
tion and allow for the possibility that a subset of the agents seek to
disrupt the synchronization process. On the other hand, while the
previous work on resilient consensus deals with adversaries, the dy-
namics of the normal agents are the special case of an LTI system
with A = 0, B = C = I . Therefore, the results of this paper are a
strict generalization of those of resilient consensus [13, 14, 16, 30].

The synchronization control laws proposed in this paper rely on
our previous resilient consensus results (specifically [16]) and ideas
from [23]. The most important idea borrowed from [23] is the re-
duction of synchronization to consensus by an appropriate change
of variables involving the matrix exponential. The introduction of
the matrix exponential in the change of variables is not an issue
in [23] because the control law is linear and does not involve the
matrix exponential. Instead, the matrix exponential and its inverse
are used only in the analysis (and in fact cancel). To adapt this
idea to resilient synchronization using the piecewise linear resilient
consensus filter (ARC-P) requires explicit use of the matrix expo-
nential (and its inverse) in the control law. For numerical stability,
we cannot use this technique on the stable modes of the system.
For this reason, we decouple the modes of the system using a mod-
ified Jordan form of the system matrix and resiliently synchronize
the weakly stable modes while allowing the stable modes to die out
unforced. For the integrator modes, the resilient consensus filter
may be applied directly to achieve synchronization. The undamped

1Note that the results of this paper also hold for adversaries with
incomplete knowledge.

modes are paired as second-order oscillators so the matrix expo-
nential is just a time-varying rotation matrix (and therefore numer-
ically stable and easily calculated). For these modes, the change of
variables used in [23] combined with ARC-P is shown to achieve
resilient synchronization.

Another similar line of research is that of resilient clock synchro-
nization, which has been studied [10, 17, 18]. However, these tech-
niques achieve agreement resiliently on logical clock values, in-
stead of agreement on the oscillator dynamics. The results of these
papers require the assumption that the skew is negligible, since the
dynamics are not directly controlled.

Finally, the research studying detection and identification of ma-
licious nodes [21, 26, 27] is related to this work because the same
threat model is assumed. In [26], a necessary condition on the con-
nectivity of the network is given for detecting and identifying up
to F malicious agents using linear iterations in synchronous net-
works. This condition is shown to also be sufficient for the problem
by demonstrating an algorithm that can recover the initial states of
the normal nodes in at most n steps. The same condition is shown
to hold for the special case of consensus in [21]. In [27], detection
and identification of cyber attacks on networked control systems
are studied for the case of continuous-time linear systems. Attacks
on nodes and on their outgoing communication channels are both
studied, and it is shown that from the perspective of other nodes,
the two cases are indistinguishable. As in [21], unknown input ob-
servers are used for the FDI scheme.

3. SYSTEM MODEL AND PROBLEM
Consider a time-varying network modeled by the (finite, simple)

digraph, D(t) = (V, E(t)), where V = {1, ..., n} is the node set
and E(t) ⊂ V×V is the directed edge set at time t. The node set is
partitioned into a set of N normal nodes N = {1, 2, . . . , N} and
a set of M adversary nodes A = {N + 1, N + 2, . . . , n}, with
M = n−N . Each directed edge (j, i) ∈ E(t) indicates that node
i can be influenced by node j at time t. In this case, we say that
agent j conveys information to agent i. The sets of in-neighbors
and out-neighbors of node i at time t are defined by N in

i (t) = {j ∈
V : (j, i) ∈ E(t)} and N out

i (t) = {j ∈ V : (i, j) ∈ E(t)}, respec-
tively. The time-varying in-degree and out-degree of node i are de-
noted di(t) = |N in

i (t)| and dout
i (t) = |N out

i (t)|, respectively. The
set of all digraphs on n nodes is denoted by Γn = {D1, . . . ,Dd}.

The time-varying topology of the network is governed by a piece-
wise constant switching signal σ(·), which is defined on R≥0 and
takes values in {1, . . . , d}. In order to emphasize the role of the
switching signal, we denote Dσ(t) = D(t). Note that time-invariant
networks are represented by defining Dσ(t) ≡ Ds, or by simply
dropping the dependence on time t.

3.1 Normal Agent Dynamics
The normal agents are assumed to be identical. Each normal

agent i ∈ N has state xi ∈ Rm, control input ui ∈ Rr , and output
yi ∈ Rs. The dynamics of each normal agent i ∈ N is given by
the linear time-invariant (LTI) system

ẋi = Axi +Bui, (1a)
yi = Cxi. (1b)

We assume (i) A is weakly stable, (ii) (A,B) is stabilizable, and
(iii) (A,C) is detectable.

The state xi(t) ∈ Rm of normal agent i ∈ N at time t has com-
ponents xi,1, xi,2, . . . , xi,m. Similarly, its output yi(t) ∈ Rs has
components yi,1, yi,2, . . . , yi,s. Likewise, we assume the compo-
nents of the state and output of adversary agent j ∈ A are given by
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xj,1, xj,2, . . . , xj,m and yj,1, yj,2, . . . , yj,s, respectively. We de-
note the vector containing the k-th component of the states of all
nodes in N , A, and V by

xN ,k(t) = [x1,k(t), . . . , xN,k(t)]
T ∈ RN ,

xA,k(t) = [xN+1,k(t), . . . , xn,k(t)]
T ∈ RM ,

and

xV,k(t) = [x1,k(t), . . . , xn,k(t)]
T ∈ Rn,

respectively. The overall state vector of N , A, and V is denoted

xN (t) = xN (t) = [xT
N ,1(t), . . . , x

T
N ,m(t)]T ∈ RNm,

xA(t) = [xT
A,1(t), . . . , x

T
A,m(t)]T ∈ RMm,

and

xV(t) = [xT
V,1(t), . . . , x

T
V,m(t)]T ∈ Rnm,

respectively. In a similar manner, we define the k-th component of
the collective outputs of N , A, or V , and so on.

3.2 Adversary Model
The adversary model studied in this paper has two aspects: the

threat model and the scope of threat model.

3.2.1 Threat Model
The threat model defines the types of behaviors allowed by indi-

vidual adversary nodes. In this paper, the adversaries are assumed
to be omniscient (i.e., they know all other states and the full net-
work topology; they are aware of the system dynamics and control
laws of the normal agents; they are aware of which other agents
are adversaries; and they know the plans of the other adversaries2).
However, the behavior of the adversary agents is limited by two
assumptions. First, we assume each out-neighbor of an adversary
agent receives the same information from the adversary. That is, the
adversary agents are incapable of duplicity. A second assumption is
that the signals shared by the adversary agents must be continuous
functions of time. This assumption is reasonable since the output
signals shared by normal agents are continuous. Therefore, it is
feasible that normal agents could use discontinuities in the output
signals to detect adversaries. The threat model described by these
limitations is referred to as the malicious agent.

DEFINITION 1 (MALICIOUS AGENT). An agent k ∈ A is a
malicious adversary if it is omniscient, and

• its state and output trajectories (xk and yk) are continuous
functions of time on [0,∞);

• the information conveyed to each out-neighbor is the same;
i.e., yk(t) is unambiguously defined.

The malicious adversary has been considered for the resilient
consensus problem [13, 14, 16, 30] and for identification of adver-
saries in linear consensus networks [21, 26, 27]. Malicious adver-
saries are similar to Byzantine faulty nodes, which have been stud-
ied in distributed computing [11, 19], communication networks [7,
9], and mobile robotics [1,3,5]. As a fault model, Byzantine nodes
are allowed to behave arbitrarily within the limits set by the model
of computation. Therefore, the analysis requires considering worst-
case behavior. The main difference between malicious and Byzan-
tine nodes is that Byzantine nodes are capable of duplicity, i.e., the
values conveyed to their out-neighbors need not be the same.
2One may take the viewpoint that a centralized omniscient adver-
sary informs and directs the behavior of the individual adversary
agents.

3.2.2 Scope of Threats
The scope of threat model defines the topological assumptions

placed on the adversaries. In this paper, we consider two determin-
istic scope of threat models. The first is the F -total model, which
assumes an upper bound F < n on the total number of adversary
agents in the network. The second is the F -local model, which as-
sumes an upper bound F on the number of neighbors of any normal
node that may be an adversary. These scope of threat models are
defined as follows.

DEFINITION 2 (F -TOTAL). A set S ⊂ V is F -total if and
only if it contains at most F nodes in the network, i.e., |S| ≤ F ,
F ∈ Z≥0. The F -total model refers to the case when the set of
adversaries is an F -total set.

DEFINITION 3 (F -LOCAL). A set S ⊂ V is F -local if and
only if it contains at most F nodes in the neighborhood of the other
nodes for all t, i.e., |N in

i (t)
∩

S| ≤ F , ∀i ∈ V \ S , F ∈ Z≥0. The
F -local model refers to the case when the set of adversaries is an
F -local set.

It should be emphasized that in time-varying network topologies,
the properties defining an F -local set must hold for all points in
time.

The F -total model has been studied extensively with respect
to node failures in distributed computing [11, 19, 28] and mobile
robotics [1, 3, 5]. The F -local model has been studied in the con-
text of fault-tolerant (or resilient) broadcasting [8, 22, 30] and re-
silient consensus [30]. While the F -total model typically requires
certain bounds on the fraction of nodes that may be adversaries
(e.g., n > 3F for Byzantine nodes [11] and n > 2F for malicious
nodes [12]), the F -local model is dependent on the network topol-
ogy and does not imply a bound on the fraction of adversary nodes
in the network.

3.3 Resilient Asymptotic Synchronization
For Resilient Asymptotic Synchronization (RAS), we consider

the intervals It,k defined by the k-th component of the states of the
normal nodes at time t as follows. Let It,k = [mN ,k(t),MN ,k(t)],
where

mN ,k(t) = min
i∈N

{xi,k(t)} and MN ,k(t) = max
i∈N

{xi,k(t)}

are the minimum and maximum values, respectively, of the k-th
component of the states of the normal nodes at time t. Then, for
each t we define the m-dimensional orthotope (or hyperrectangle)
Ht,N constructed from the intervals It,k by

Ht,N = It,1 × It,2 × · · · × It,m.

There is no explicit restriction on the initial states of the normal
nodes; i.e., it is allowed that xi(0) ∈ Rm for all i ∈ N . However,
it is implicitly assumed that the normal states are safe in the sense
that they lie in some safe set S0,N ⊂ Rm. It is further assumed
that the safe set S0,N contains the orthotope defined by the initial
states of the normal nodes, H0,N ; i.e., H0,N ⊆ S0,N . With these
concepts, the RAS problem is defined as follows.

DEFINITION 4. Suppose the normal agents are identical LTI
systems described by (1) and have initial states xi(0) ∈ Rm for
i ∈ N . Let S0,N ⊂ Rm be a safe set that contains the orthotope
H0,N ; i.e., H0,N ⊆ S0,N . Then the normal agents are said to
achieve resilient asymptotic synchronization (RAS) in the presence
of adversary agents (given a particular adversary model) if there
exists a zero-input solution x0(t) that satisfies ẋ0(t) = Ax0(t) for
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almost all t ∈ R≥0 with x0(0) ∈ S0,N , such that the normal states
asymptotically converge to x0. That is,

lim
t→∞

||xi(t)− x0(t)||2 = 0, ∀i ∈ N . (2)

A few remarks are in order with respect to the RAS problem.
First, because the normal agents converge to an unforced trajectory
of the system, it is important that the system has no unstable modes.
However, it is possible that the matrix A in the LTI system of (1)
is the result of local stabilization through an appropriate feedback
controller, so that the system in (1) is in fact a closed-loop feedback
control system. Regardless of whether (1) defines the dynamics of
a plant or a feedback control system, the control input ui is viewed
as the feedback control input from the multi-agent network.

The RAS problem is related to the resilient asymptotic consensus
(RAC) problem [16]. Instead of converging to a common limit as
in RAC, the states of the normal agents must converge to the zero-
input trajectory x0(t). Also, observe that the zero-input trajectory
x0(t) to which the normal agents must converge satisfies the safety
condition x0(0) ∈ S0,N . The safety condition requires that the
adversary agents are not able to drive the normal agents to follow
an unforced trajectory with an unsafe initial value.

4. PRELIMINARIES

4.1 Background
In this section we recall pertinent definitions and terminologies

from matrix theory [6] and LTI system theory [2]. We use the fol-
lowing notations common in numerical analysis [20, 25, 29]. The
set of eigenvalues of matrix A ∈ Rm×m is denoted λ(A) = {λ ∈
C : det(A − λI) = 0}. The largest real part of any eigenvalue of
A is denoted α(A) = max{Re(λ) : λ ∈ λ(A)}. The dimension
of the eigenspace of A corresponding to a particular eigenvalue
is referred to as the geometric multiplicity of the eigenvalue. The
multiplicity of an eigenvalue as a root of the characteristic poly-
nomial of A is called the algebraic multiplicity of the eigenvalue.
If the geometric multiplicity of any eigenvalue of A is strictly less
than its algebraic multiplicity, then A is said to be defective. Such
an eigenvalue (with smaller geometric multiplicity than algebraic
multiplicity) is said to be defect [25]. These terminologies are used
to define stable and weakly stable matrices.

DEFINITION 5 ( [25]). The matrix A ∈ Rm×m is a stable
matrix if α(A) < 0. The matrix A is said to be weakly stable if it
is stable or if α(A) = 0 but no eigenvalue λ with Re(λ) = α(A)
is defect.

We refer to an eigenvalue λ ∈ λ(A) as stable if Re(λ) < 0, weakly
stable if Re(λ) = 0 but λ is non-defect, and unstable otherwise.

Throughout this paper, we use the notation ||A||2 to denote the
spectral norm of matrix A and

µ(A) = max{µ : µ ∈ λ((AH +A)/2)}.

to denote the logarithmic norm of A [25], where AH is the Hermi-
tian transpose of A. Since (AH+A)/2 is a real-symmetric matrix,
it has real eigenvalues [6], and µ(A) ∈ R. The stability of the
matrix A is related to its logarithmic norm as follows.

THEOREM 1 ( [25]). A matrix A ∈ Rm×m is stable (weakly
stable) if and only if µ(A) < 0 (µ(A) ≤ 0).

4.2 A Block Diagonal Matrix Form
In this section, we present a block diagonal matrix form that

proves useful in the design of our resilient synchronization control
law.

LEMMA 1. For any square, real-valued, weakly stable matrix
A ∈ Rm×m, there exists an invertible matrix Q ∈ Rm×m such
that

R = Q−1AQ,

where R is a block diagonal matrix given by

R=

[
diag(Jm1(λ1), . . . , Jmp(λp)) 0

0 diag(R2(ω1), . . . , R2(ωq))

]
.

(3)
Each Jmi(λi) ∈ Rmi×mi , for i = 1, . . . , p, is a Jordan block in
which eigenvalue λi either has negative real part or λi = 0. If
λi = 0, then mi = 1 and Jmi(λi) is a 1× 1 zero matrix. The first
z Jordan blocks (with 0 ≤ z ≤ p) account for the zero eigenvalues.
The remaining p− z Jordan blocks correspond to eigenvalues with
negative real part. Each R2(ωj), for j = 1, 2, . . . , q, is a 2 × 2
matrix of the form

R2(ωj) , R2(λp+2j−1, λp+2j) =

[
0 −ωj

ωj 0

]
, (4)

where λp+2j−1 = −ωj i and λp+2j = ωj i, with ωj ̸= 0 and
i =

√
−1.

PROOF. Since A is weakly stable, all eigenvalues have nonpos-
itive real parts and any eigenvalues with zero real part are non-
defect. This implies that any zero eigenvalue corresponds to a
1×1 Jordan block. Further, because A is real-valued, any complex
eigenvalues occur in conjugate pairs, which can be paired as in (4).
The remainder of the result follows from the Jordan decomposition
theorem.

Using the modified Jordan form of Lemma 1, we can change the
coordinate system of an LTI system with weakly stable A ∈ Rm×m

so that it consists of decoupled LTI subsystems.3 To show this,
suppose R = Q−1AQ is the modified Jordan form of A given in
Lemma 1, and consider the coordinate transformation

x = Qx̄.

Then, the dynamics in terms of x̄ are

˙̄x = Rx̄+B′u, (5a)

y = C′x̄, (5b)

where B′ = Q−1B and C′ = CQ. Let

x̄ =



x̄m1

x̄m2

...
x̄mp

x̄mp+1

...
x̄mp+q


and B′ =



B′
m1

B′
m2

...
B′

mp

B′
mp+1

...
B′

mp+q


,

where x̄mi ∈ Rmi and B′
mi

∈ Rmi×r for i = 1, 2, . . . , p, and
x̄mp+j ∈ R2 and B′

mp+j
∈ R2×2 for j = 1, 2, . . . , q. Each of

these components corresponds to a block in the matrix R. Using
this notation, we may rewrite the state equation (5a) above as p+ q
decoupled state equations, where

˙̄xmi = Jmi(λi)x̄mi +B′
mi

u, i = 1, 2, . . . , p, (6a)
˙̄xmp+j = R2(ωj)x̄mp+j +B′

mp+j
u, j = 1, 2, . . . , q. (6b)

3Of course, any LTI system may be decoupled using the Jordan
form. The utility of the decomposition described here is demon-
strated in subsequent sections.
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Figure 1: Illustration of an (r, s)-edge reachable set of nodes.

Note that if A has at least one zero eigenvalue (i.e., z ≥ 1), then
each x̄mi ∈ R in (6a) has integrator dynamics for i = 1, . . . , z.
On the other hand, if A has at least one eigenvalue with negative
real part, then x̄mj has exponentially stable dynamics for j = z +
1, . . . , p.

The matrix exponential of R2(ωj) where λp+2j−1 = −ωj i and
λp+2j = ωj i, with ωj ̸= 0 and i =

√
−1, is given by

eR2(ωj)t =

[
cos(ωjt) − sin(ωjt)
sin(ωjt) cos(ωjt)

]
. (7)

This matrix exponential is a time-varying rotation matrix with an-
gular frequency ωj . The zero-input solution of the weakly stable
subsystems in (6b) has the form

x̄mp+j (t)=

[
cos(ωjt) − sin(ωjt)
sin(ωjt) cos(ωjt)

]
x̄mp+j (0), j=1, 2, . . . , q.

4.3 Network Robustness
Network robustness formalizes the notion of sufficient redun-

dancy of directed edges between subsets of nodes in the network.
Therefore, this property is useful for the study of resilient dis-
tributed algorithms that use only local information. In order to de-
fine network robustness, we require the following definition [16].

DEFINITION 6 ((r, s)-EDGE REACHABLE SET). Given a non-
trivial digraph D and a nonempty subset of nodes S, we say that
S is an (r, s)-edge reachable set if there are at least s nodes in S
with at least r in-neighbors outside of S, where r, s ∈ Z≥0; i.e.,
given X r

S = {i ∈ S : |N in
i \ S| ≥ r}, then |X r

S | ≥ s.

A general illustration of an (r, s)-edge reachable set of nodes
is shown in Figure 1. The parameter s in the definition of (r, s)-
edge reachability quantifies a lower bound on the number of nodes
in the set with at least r in-neighbors outside S. Hence there are
two forms of redundancy quantified by the definition of an (r, s)-
edge reachable set (with r, s ≥ 1). The parameter r quantifies
the redundancy in the number of neighbors from outside the set,
and parameter s quantifies the redundancy in the number of nodes
with sufficient redundancy in the number of neighbors from outside
the set. Edge reachability is used to define the global property of
robustness [16], which essentially places lower bounds on the edge
reachability properties of any pair of nonempty, disjoint subsets of
nodes.

DEFINITION 7 ((r, s)-ROBUSTNESS). A nonempty, nontrivial
digraph D = (V, E) on n nodes (n ≥ 2) is (r, s)-robust, for
nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for every pair
of nonempty, disjoint subsets S1 and S2 of V at least one of the
following holds (recall X r

Sk
= {i ∈ Sk : |N in

i \ Sk| ≥ r} for
k ∈ {1, 2}):

(i) |X r
S1
| = |S1|;

(ii) |X r
S2
| = |S2|;

(iii) |X r
S1
|+ |X r

S2
| ≥ s.

By convention, if D is empty or trivial (n ≤ 1), then D is (0,1)-
robust. If D is trivial, D is also (1,1)-robust.

Note that an (r, 1)-edge reachable set is abbreviated as r-edge reach-
able, and an (r, 1)-robust digraph is abbreviated as r-robust.

4.4 Resilient Consensus Filter
In the decoupled system dynamics of (6), the subsystems cor-

responding to zero eigenvalues have integrator dynamics. There-
fore, for these subsystems, achieving resilient synchronization is
equivalent to achieving resilient consensus. This motivates the use
of resilient consensus filters in the synchronization control laws.
This section describes the Adversarial Robust Consensus Protocol
(ARC-P) with parameter F , which has been shown to be effective
in mitigating the influence of malicious adversaries under the F -
total and F -local models [14, 16]. In [14, 16], ARC-P operates on
scalar valued information from neighbors. In this case, ARC-P with
parameter F can be described by the following operations [16].

1. At time t, each normal node i obtains the values of its in-
neighbors, and forms a sorted list.

2. If there are less than F values strictly larger than its own
value, xi(t), then normal node i removes all values that are
strictly larger than its own. Otherwise, it removes precisely
the largest F values in the sorted list. Likewise, if there are
less than F values strictly smaller than its own value, then
node i removes all values that are strictly smaller than its
own. Otherwise, it removes precisely the smallest F values.

3. Let Ri(t) denote the set of nodes whose values were re-
moved by normal node i in step 2 at time t. Each normal
node i applies the update4

ẋi(t) =
∑

j∈N in
i (t)\Ri(t)

w(j,i)(t) (xj(t)− xi(t)) , (8)

where the weights w(j,i)(t) are positive, piecewise continu-
ous, and uniformly bounded (i.e., 0 < ϵ ≤ w(j,i)(t) ≤ β).

To modify ARC-P with parameter F in order to handle vector
valued information, simply apply the rules described above to each
component of the vector. To mathematically define this behavior
requires the following definitions used in the formal specification
of the scalar valued version of ARC-P.

DEFINITION 8. Let k ∈ N and F ∈ Z≥0. Denote the elements
of vectors ξ, w, z ∈ Rk by ξl, wl, and zl, respectively, for l =
1, 2, . . . , k. Then:

(i) The (ascending) sorting function on k elements, ρk : Rk →
Rk, is defined by ξ = ρk(z) such that ξ is a permutation of z
that satisfies

ξ1 ≤ ξ2 ≤ · · · ≤ ξk;

(ii) The weighted zero-selective reduce function with respect to
F and k, rk0,F : Rk×Rk → R, is defined by (9), where 1≥0(·)
and 1≤0(·) are indicator functions, and the weights are uni-
formly bounded by 0 < ϵ ≤ wl ≤ β, ∀l.

4Note that if all neighboring values are removed, then ẋi(t) = 0.
Furthermore, in (8) xj(t) ∈ R for all j ∈ V .
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rk0,F (z, w) =


∑F

l=1 wl1≥0(zl)zl +
∑k−F

l=F+1 wlzl +
∑k

l=k−F+1 wl1≤0(zl)zl k > 2F ;∑k−F
l=1 wl1≥0(zl)zl +

∑k
l=F+1 wl1≤0(zl)zl F < k ≤ 2F ;

0 k ≤ F ;
(9)

(iii) The composition of the sorting and weighted zero-selective re-
duce functions with respect to F and k is defined by ϕk

0,F : Rk×
Rk → R, which is defined for all z ∈ Rk and w ∈ Rk such
that 0 < ϵ ≤ wl ≤ β by

ϕk
0,F (z, w) = rk0,F (ρk(z), w).

Observe that whenever k = di(t) (the in-degree of node i) and
the input vector z is a vector of relative states of the form xj(t) −
xi(t), where node j is a neighbor of node i, the sorting function
sorts the relative states. The zero-selective reduce function then
removes up to the smallest F relative state values only if they are
negative, or, equivalently, if the corresponding xj is less than xi.
Likewise, it removes up to the largest F values only if they are
positive (or xj > xi). The remaining values are weighted and
summed. Hence, the function ϕ

di(t)
0,F performs the same operations

as the right-hand side of (8) when applied to a vector containing the
relative state values xj(t)− xi(t) for j ∈ N in

i (t).
To describe the vector of relative state values needed for this rep-

resentation, let 1di(t) denote the di(t)×1 vector of ones and define
Ni(t) ∈ Rdi(t)×n as a sparse matrix with each row corresponding
to a distinct j ∈ N in

i (t) such that each row has a single 1 in the j-th
column. With this notation, (8) may be rewritten as

ẋi(t) = ϕ
di(t)
0,F

(
Ni(t)xV(t)− xi(t)1di(t), wi(t)

)
,

where wi(t) ∈ Rdi(t) is a vector of weights of the form w(j,i)(t)

corresponding to each j ∈ N in
i (t).

We extend the definitions above to describe ARC-P with vectors
xj(t) ∈ Rm for all j ∈ V as follows. Let z, w ∈ Rkm be compos-
ite vectors with z = [zT1 , . . . , z

T
m]T and w = [wT

1 , . . . , w
T
m]T such

that zi, wi ∈ Rk for i = 1, . . . ,m. Define Φk,m
0,F : Rkm → Rm

such that

Φk,m
0,F (z, w) =

 ϕk
0,F (z1, w1)

...
ϕk
0,F (zm, wm)

 . (10)

Then, the update rule of the vector valued version of ARC-P with
parameter F is given by5

ẋi = Φ
di(t),m
0,F

(
[Im ⊗Ni(t)]xV(t)− [xi(t)⊗ 1di(t)], wi(t)

)
=


ϕ
di(t)
0,F

(
Ni(t)xV,1(t)− xi,1(t)1di(t), wi,1(t)

)
...

ϕ
di(t)
0,F

(
Ni(t)xV,m(t)− xi,m(t)1di(t), wi,m(t)

)
 ,

(11)

5Recall the definition of the Kronecker product [6]. Given B ∈
Rm×n and C ∈ Rp×q , the Kronecker product B ⊗ C ∈ Rmp×nq

is defined as

B ⊗ C ,

 b11C . . . b1nC
...

. . .
...

bm1C . . . bmnC

 .

for each normal node i ∈ N for t ∈ R≥0. The time-varying com-
posite weight vector

wi(t) = [wT
i,1(t), . . . , w

T
i,m(t)]T

is comprised of m vectors wi,k(t) ∈ Rdi(t), for k = 1, 2, . . . ,m,
each of which contains the scalar weights corresponding to the k-th
component of the relative state vectors that are kept, as determined
by the sorting function. For example, if the k-th component of
neighbor j ∈ N in

i (t) has the second smallest value in the neigh-
borhood of i that is kept at time t for the k-th component (as deter-
mined by the sorting function), then the second entry in the weight
vector wi,k(t) is w(j,i),k(t). Note that all weights are uniformly
bounded between α > 0 and β ≥ α.

The main resilient consensus results from [16] that are needed
for the resilient synchronization analysis are summarized by the
following theorem [16].

THEOREM 2. Consider a time-varying network modeled by a
time-varying digraph D(t) = (V, E(t)). In the presence of uni-
formly continuous malicious agents under the F -total model (or F -
local model), ARC-P with parameter F achieves resilient asymp-
totic consensus (RAC) if there exists t0 ≥ 0 such that D(t) is
(F + 1, F + 1)-robust (or (2F + 1)-robust), ∀t ≥ t0. In either
case, xi,k(t) ∈ [mN ,k(0),MN ,k(0)] for all k ∈ {1, 2, . . . ,m}
and i ∈ N .

5. RAS ANALYSIS
In this section, we analyze synchronization control laws in the

presence of malicious agents under the F -total and F -local models.
We first introduce resilient synchronization controllers for the case
of full-state feedback. Then we show how to extend the dynamic
control law with output feedback.

5.1 RAS with Full State Feedback
In this section, we analyze a resilient synchronization controller

for the case when A is weakly stable, the pair (A,B) is stabilizable,
and full-state feedback information is available; i.e., C = Im so
that yi = xi for all i ∈ N . Before analyzing the dynamic control
law for the general full-state feedback case, we first consider a static
controller that assumes that matrices B and C are invertible.

The resilient control laws all use the modified Jordan form of
Lemma 1. For A in (1a), there exists invertible Q such that

R = Q−1AQ

has the form of Lemma 1. The main idea of the resilient control
law is to decouple the dynamics and allow the stable components
to converge to zero unforced. The weakly stable components are
the only ones that explicitly require synchronization. If λi = 0, for
i = 1, . . . , z, then these weakly stable components have integrator
dynamics, and correspond to the first z blocks in R. For these com-
ponents, synchronization is equivalent to consensus. The remain-
ing weakly stable components correspond to blocks R2(ωj) in R,
as defined in (4). For these components, we consider its matrix ex-
ponential (given in (7)), and the inverse of its matrix exponential.
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Figure 2: Resilient synchronization control law with invertible B and C for agent i.

We define the following modified exponential matrices:

ER(t)=

[
diag(E1, . . . , Ep) 0

0 diag(eR2(ω1)t, . . . , eR2(ωq)t)

]
(12)

and

FR(t)=

[
diag(E1, . . . , Ep) 0

0 diag(e−R2(ω1)t, . . . , e−R2(ωq)t)

]
,

(13)
where Ei = 1 if λi = 0, and Ei = 0 otherwise (in the latter case,
mi > 1 is possible, in which case Ei is an mi ×mi zero matrix).
In either case,

ER(t)FR(t) = FR(t)ER(t) =


E1 0 . . . 0 0
0 E2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ep 0
0 0 . . . 0 I2q

 .

Moreover, both ER(t) and FR(t) commute with R. That is,

RER(t) = ER(t)R

and

RFR(t) = FR(t)R.

Now, consider the decoupled coordinates of (5) and left multi-
ply the decoupled state vector x̄i(t) by FR(t). This operation nul-
lifies the stable components, leaves the integrator components un-
changed, and transforms the components with nonzero, weakly sta-
ble eigenvalues to the corresponding component of an initial value
of the unforced system ẋ = Ax. By applying the consensus fil-
ter of ARC-P to the result and then inverting the operations on the
weakly stable components, we attain a control law for normal agent
i of the following form:

ui(t) = B′−1ER(t)Φ
di(t),m
0,F (Ñi[In ⊗ (FR(t)C

′−1)]yV(t)

− [(FR(t)C
′−1yi(t))⊗ 1di(t)], wi(t)),

(14)

where Ñi = Im ⊗ Ni, R = Q−1AQ is given as in Lemma 1,
B′ = Q−1B, C′ = CQ, ER(t) is defined by (12), FR(t) is given
in (13), and Φ

di(t),m
0,F (·, ·) is the ARC-P function defined in (10)

with k = di(t) and parameter F . The control law of (14) is illus-
trated in Figure 2. Notice that matrices ER(t) and FR(t) cannot
be replaced by the matrix exponential eRt and its inverse e−Rt, re-
spectively, in the case that A has stable modes. Doing so would
result in numerical instability when applying the ARC-P consensus
filter.

Lemma 2 given below demonstrates how the static control law
of (14) is able to achieve RAS whenever the matrices B and C
are invertible. The key to the success of the control law is that it
reduces the resilient synchronization problem to the resilient con-
sensus problem.

LEMMA 2. Suppose each agent i ∈ N is an LTI system as
in (1). Let B,C ∈ Rm×m be nonsingular matrices and suppose
that A is weakly stable. Suppose there are uniformly continuous
malicious agents that satisfy either (i) the F -total, or (ii) the F -
local model. Assume that the multi-agent network is time-varying
and there exists t0 ≥ 0 such that D(t) is either (i) (F +1, F +1)-
robust, or (ii) (2F + 1)-robust, ∀t ≥ t0. Further, suppose each
normal agent i ∈ N uses the control law of (14) for all t ∈ R≥0.
Then RAS is achieved.

PROOF. The closed-loop system for normal node i is given by

ẋi(t) = Axi(t)+QER(t)Φ
di(t),m
0,F (Ñi[In ⊗ FR(t)Q

−1]xV(t)

− [(FR(t)Q
−1xi(t))⊗ 1di(t)], wi(t)) (15)

Make the change in coordinates for all i ∈ V

xi = Qx̄i.

The closed-loop system may be rewritten as

˙̄xi(t) = Rx̄i(t)+ER(t)Φ
di(t),m
0,F (Ñi[In ⊗ FR(t)]x̄(V,i)(t)

− [(FR(t)x̄i(t))⊗ 1di(t)], wi(t)). (16)

To facilitate analysis of the decoupled system in the x̄i coordinates,
let

x̄i =



x̄m1
i

x̄m2
i

...
x̄
mp

i

x̄
mp+1

i

...
x̄
mp+q

i


, i ∈ N

with elements x̄
mj

i = [x̄
mj

i,1 , x̄
mj

i,2 , . . . , x̄
mj

i,mj
]T ∈ Rmj . Notice

in (16) that the stable components of x̄i (i.e., x̄mj

i for j = z +
1, . . . , p) are allowed to evolve freely, and only the weakly sta-
ble components are affected by the control law. In the following
analysis, we show that each of the components x̄mj

i asymptotically
synchronize to a corresponding component of a zero-input solution
of ˙̄x0 = Rx̄0 such that the initial condition of each element x̄0,k
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satisfies

x̄0,k(0) ∈
[
min
i∈N

{x̄i,k(0)},max
i∈N

{x̄i,k(0)}
]
.

To facilitate this analysis, denote

x̄0 =



x̄m1
0

x̄m2
0

...
x̄
mp

0

x̄
mp+1

0

...
x̄
mp+q

0


.

For each stable component x̄mj

i ∈ Rmj , for j = z + 1, . . . , p,
the Jordan block Jmj (λj) contains a stable eigenvalue, which im-
plies that these components exponentially converge to zero. Thus,
for any zero-input trajectory of

˙̄x
mj

0 = Jmj (λj)x̄
mj

0 ,

there exists κj : R≥0 → R≥0 with κj(t) → 0 as t → ∞, such that
∀i ∈ N and for all t ≥ 0

||x̄mj

i (t)− e
Jmj

(λj)tx̄
mj

0 (0)||2 ≤ κj(t)||x̄
mj

i (0)− x̄
mj

0 (0)||2.

In particular, there exists a zero-input solution that satisfies the
above inequality with initial values x̄mj

0,k(0), for k = 1, 2, . . . ,mj ,
such that

x̄
mj

0,k(0) ∈
[
min
i∈N

{x̄mj

i,k (0)},max
i∈N

{x̄mj

i,k (0)}
]
.

If A has z ≥ 1 (non-defect) zero eigenvalues, then each com-
ponent x̄mk

i (t) ∈ R, k = 1, . . . , z, evolves as an integrator us-
ing ARC-P. It follows from Theorem 2 that there exists x̄mk

0 (0) ∈
[mini∈N {x̄mk

i (0)},maxi∈N {x̄mk
i (0)}] and κk : R≥0 → R≥0 with

κk(t) → 0 as t → ∞, such that for all t ≥ 0 and for all i ∈ N

||x̄mk
i (t)− x̄

mk
0 (0)||2 ≤ κk(t)||x̄mk

i (0)− x̄
mk
0 (0)||2.

Next, consider the remaining weakly stable components x̄mp+j

i ∈
R2, for j = 1, 2, . . . , q, and denote R2(ωj) = R2,j for brevity.
The closed-loop system for this component is given by

˙̄x
mp+j

i = R2,j x̄
mp+j

i

+ eR2,jtΦ
di(t),2
0,F ([I2 ⊗Ni][In ⊗ e−R2,jt]x̄

mp+j

V (t)

− [(e−R2,jtx̄
mp+j

i (t))⊗ 1di(t)], wi(t)).

Consider the change of variable

zji (t) = e−R2,jtx̄
mp+j

i (t), i ∈ V.

Then, for all i ∈ N

żji = −R2,je
−R2,jtx̄

mp+j

i + e−R2,jtR2,j x̄
mp+j

i

+Φ
di(t),2
0,F

(
[I2 ⊗Ni]z

j
V(t)− [zji (t)⊗ 1di(t)], wi(t)

)
= Φ

di(t),2
0,F

(
[I2 ⊗Ni]z

j
V(t)− [zji (t)⊗ 1di(t)], wi(t)

)
where we have used the fact that R2,je

−R2,jt = e−R2,jtR2,j in
going from the first to second equality. It follows from Theo-
rem 2 that the zji ’s asymptotically converge to a common value
x̄
mp+j

0 (0) ∈ R2. Since zji (0) = x̄
mp+j

i (0) for all i ∈ N , The-
orem 2 implies that the common limit of the consensus process

x̄
mp+j

0 (0) satisfies for each element k ∈ {1, 2},

x̄
mp+j

0,k (0) ∈
[
min
i∈N

{x̄mp+j

i,k (0)},max
i∈N

{x̄mp+j

i,k (0)}
]
.

Because the zji ’s asymptotically converge to x̄
mp+j

0 (0), there ex-
ists a positive-definite function κp+j : R≥0 → R≥0 that satisfies
κp+j(t) → 0 as t → ∞, such that for all t ≥ 0 and for all i ∈ N

||zji (t)− x̄
mp+j

0 (0)||2 ≤ κp+j(t)||zji (0)− x̄
mp+j

0 (0)||2.

By multiplying each side of the inequality by ||eR2,jt||2 and using
the submultiplicative property of matrix norms [6], it follows that
∀i ∈ N

||x̄mp+j

i (t)− eR2,jtx̄
mp+j

0 (0)||2
≤ κp+j(t)||eR2,jt||2||x̄

mp+j

i (0)− x̄
mp+j

0 (0)||2,

where we have also used the fact that zji (0) = x̄
mp+j

i (0). An
important bound, derived by Dahlquist [4], is

||eAt||2 ≤ eµ(A)t, ∀t ∈ R≥0, (17)

It follows from Theorem 1 and (17) that there exists δp+j ≥ 0 such
that ∀i ∈ N

||x̄mp+j

i (t)− eR2,jtx̄
mp+j

0 (0)||2
≤ κp+j(t)e

−δp+jt||x̄mp+j

i (0)− x̄
mp+j

0 (0)||2,

Since κp+j(t) → 0 as t → ∞, resilient asymptotic synchroniza-
tion is achieved for each weakly stable component x̄mp+j

i ∈ R2

for j = 1, 2, . . . , q in the x̄i coordinates.
Combining the above inequalities, it follows that there exists

κ : R≥0 → R≥0 with κ(t) → 0 as t → ∞, such that for all
t ≥ 0

||x̄i(t)− eRtx̄0(0)||2 ≤ κ(t)||x̄i(0)− x̄0(0)||2, ∀i ∈ N ,

where the elements x̄0,k for k = 1, 2, . . . ,m have initial values
that satisfy

x̄0,k(0) ∈
[
min
i∈N

{x̄i,k(0)},max
i∈N

{x̄i,k(0)}
]
,

so that

x0,k(0) ∈ [mN ,k(t),MN ,k(t)] ,

where x0 = Qx̄0. Finally, multiplying each side of the above
inequality by ||Q||2, using again the submultiplicative property of
matrix norms, and substituting x̄0(t) = eRtx̄0(0), it follows that

||xi(t)− eAtx0(0)||2 ≤ κ(t)||Q||2||Q−1||2||xi(0)− x0(0)||2,

for all i ∈ N . Since κ(t) → 0 as t → ∞, RAS is achieved.

For the case when the input matrix B is not invertible, we require
a dynamic controller that includes a stabilizing gain matrix K. The
controller state ηi must be initially relaxed (i.e., ηi(0) = 0 for all
i ∈ N ). The dynamic control law is given by

η̇i = (A+BK)ηi −QERΦ
di(t),m
0,F (Ñi[In ⊗ FRQ

−1]sV

− [(FRQ
−1si)⊗ 1di(t)], wi)

ui = Kηi,

(18)

where Ñi = Im ⊗ Ni, sV = [sT1 , s
T
2 , . . . , s

T
n]

T, sj = xj − ηj
for j ∈ V , ER(t) is defined by (12), FR(t) is given in (13), and
Φ

di(t),m
0,F (·, ·) is the filter applied in ARC-P and defined in (10) with

k = di(t).
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THEOREM 3. Suppose each agent i ∈ N is an LTI system as
in (1) with full-state feedback (i.e., C = Im). Suppose there are
malicious agents with uniformly continuous state xk and controller
state ηk for k ∈ A that satisfy either (i) the F -total, or (ii) the
F -local model. Assume that A is weakly stable, the pair (A,B)
is stabilizable, and let K ∈ Rm×r be a stabilizing matrix such
that A + BK is Hurwitz. Assume that the multi-agent network is
time-varying and there exists t0 ≥ 0 such that D(t) is either (i)
(F + 1, F + 1)-robust, or (ii) (2F + 1)-robust, ∀t ≥ t0. Further,
suppose each normal agent i ∈ N executes the control law of (18)
with controller state ηi that is initially relaxed (i.e., ηi(0) = 0 for
all i ∈ N ). Then RAS is achieved.

PROOF. The dynamics of xi and si for each normal agent i ∈
N may be rewritten as

ẋi(t) = (A+BK)xi(t)−BKsi(t) (19)

ṡi(t) = Asi(t) +QER(t)Φ
di(t),m
0,F (Ñi[In ⊗ FR(t)Q

−1]sV(t)

− [(FR(t)Q
−1si(t))⊗ 1di(t)], wi(t))

(20)

Observe that (20) is decoupled from (19) and matches (15) in the
proof of Lemma 2. Note that since ηi(0) = 0, it follows that
si(0) = xi(0) for all i ∈ N . Therefore, Lemma 2 implies that
the solutions of (20) converge to a solution of ṡ0 = As0 such that
s0(0) ∈ S0,N . Because the si’s synchronize, it follows that the
consensus term in (18) converges to zero. Combining this with the
fact that A+BK is Hurwitz, implies that ηi → 0 as t → ∞. Thus,
for any ϵ > 0 there exists T ∈ R>0 such that for all t > T ,

||si(t)− eAts0(0)||2 < ϵ/2 and ||ηi(t)|| < ϵ/2 for all i ∈ N .

Therefore, for t > T

||xi(t)− eAts0(0)||2 = ||si(t) + ηi(t)− eAts0(0)||2
≤ ||si(t)− eAts0(0)||2 + ||ηi(t)||2
< ϵ ∀i ∈ N ,

so that RAS is achieved.

Notice that both assumptions (i)A weakly stable and (ii) (A,B)
stabilizable are needed in the proof given the dynamic control law
(18). Since A is weakly stable, the dynamics of si in (20) reduce
to the case of Lemma 2. The stabilizable pair (A,B) is used to
asymptotically drive the controller state ηi to zero once the states
of normal agents have synchronized.

5.2 RAS with Output Feedback
In this section, we study the case of output feedback whenever

(A,C) is detectable (in addition to A weakly stable and (A,B)
stabilizable). Here, we require a Luenberger observer in order to
estimate the state. In this case, the dynamic control law is given by

η̇i = (A+BK)ηi +H(ŷi − yi) (21)

−QER(t)Φ
di(t),m
0,F (Ñi[In ⊗ FR(t)Q

−1]ŝV(t)

− [(FR(t)Q
−1ŝi(t))⊗ 1di(t)], wi(t))

˙̂xi = Ax̂i +Bui +H(ŷi − yi) (22a)
ui = Kηi (22b)
ŷi = Cx̂i, (22c)

where Ñi = Im ⊗ Ni, ŝV = [ŝT1 , ŝ
T
2 , . . . , ŝ

T
n]

T, ŝj = x̂j − ηj
for j ∈ V , ER(t) is defined by (12), FR(t) is given in (13), and
Φ

di(t),m
0,F (·, ·) is the ARC-P filter defined in (10) with k = di(t).

THEOREM 4. Suppose each agent i ∈ N is an LTI system as in
(1) with output feedback. Suppose there are malicious agents with
uniformly continuous observer state x̂k and controller state ηk for
k ∈ A that satisfy either (i) the F -total, or (ii) the F -local model.
Assume that A is weakly stable, the pair (A,B) is stabilizable, the
pair (A,C) is detectable, and let K ∈ Rm×r and H ∈ Rm×s be
a stabilizing and observer matrix, respectively, such that A+BK
and A + HC are Hurwitz. Assume that the multi-agent network
is time-varying and there exists t0 ≥ 0 such that D(t) is either (i)
(F + 1, F + 1)-robust, or (ii) (2F + 1)-robust, ∀t ≥ t0. Further,
suppose each normal agent i ∈ N executes the control law of (21)
with controller state ηi that is initially relaxed (i.e., ηi(0) = 0 for
all i ∈ N ) and Luenberger observer (22) with observer states x̂i

for i ∈ N that are contained in some orthotope within the safe set
S0,N . Then RAS is achieved.

PROOF. Define ei = xi − x̂i. Then, the dynamics of xi, ŝi, and
ei for each normal agent i ∈ N may be rewritten as

ẋi(t) = (A+BK)xi(t)−BK(ei(t) + ŝi(t)) (23)

˙̂si(t) = Aŝi(t) +QER(t)Φ
di(t),m
0,F (Ñi[In ⊗ FR(t)Q

−1]ŝV(t)

− [(FR(t)Q
−1ŝi(t))⊗ 1di(t)], wi(t)) (24)

ėi(t) = (A+HC)ei(t) (25)

Observe that (24) and (25) are decoupled from each other and from
(23). Note that (24) matches (15) in the proof of Lemma 2. Since
ηi(0) = 0, it follows that ŝi(0) = x̂i(0) for all i ∈ N . Therefore,
Lemma 2 implies that the solutions of (20) converge to a solution
of ˙̂s0 = Aŝ0 such that ŝ0(0) ∈ S0,N (since the x̂i(0)’s are in
some orthotope within S0,N ). The ei’s converge to zero because
A + HC is Hurwitz. Therefore, the observer error term in (21)
converges to zero. Because the ŝi’s synchronize, it follows also
that the consensus term in (21) converges to zero. Combining these
with the fact that A + BK is Hurwitz, implies that ηi → 0 as
t → ∞. Thus, for any ϵ > 0 there exists T ∈ R>0 such that for all
t > T ,

||ŝi(t)−eAtŝ0(0)||2 < ϵ/3, ||ei(t)||2 < ϵ/3, and ||ηi(t)|| < ϵ/3

for all i ∈ N . Therefore, for t > T

||xi(t)−eAtŝ0(0)||2 = ||x̂i(t) + ei(t)− eAtŝ0(0)||2
= ||ŝi(t) + ηi(t) + ei(t)− eAtŝ0(0)||2
≤ ||ŝi(t)− eAtŝ0(0)||2 + ||ei(t)||2 + ||ηi(t)||2
< ϵ, ∀i ∈ N ,

so that RAS is achieved.

Observe that the observer error term is used in the dynamic con-
trol law of (21) to ensure the form of (24) matches (15). The as-
sumption that (A,C) is detectable guarantees that the observer er-
ror term vanishes asymptotically.

6. CONCLUSIONS
In this paper, we introduce the resilient asymptotic synchroniza-

tion (RAS) problem. We study several resilient synchronization
laws under the assumption that the normal agents are identical lin-
ear time-invariant (LTI) systems that are weakly stable, stabiliz-
able, and detectable. We demonstrate how RAS can be achieved
in time-varying networks that are sufficiently robust by leveraging
previous resilient consensus results. The type of adversaries con-
sidered in this paper are omniscient, and can behave arbitrarily up
to certain continuity conditions. In future work, we would like to
relax some of the assumptions on the normal agent dynamics and
study the case of nonidentical normal agents.
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