
Triggering Rowhammer Hardware Faults on ARM: A Revisit
Zhenkai Zhang

Vanderbilt University
Nashville, TN, USA

zhenkai.zhang@vanderbilt.edu

Zihao Zhan
Vanderbilt University
Nashville, TN, USA

zihao.zhan@vanderbilt.edu

Daniel Balasubramanian
Vanderbilt University
Nashville, TN, USA

daniel@isis.vanderbilt.edu

Xenofon Koutsoukos
Vanderbilt University
Nashville, TN, USA

xenofon.koutsoukos@vanderbilt.edu

Gabor Karsai
Vanderbilt University
Nashville, TN, USA

gabor.karsai@vanderbilt.edu

ABSTRACT
The rowhammer bug belongs to software-induced hardware faults,
and has posed great security challenges to numerous systems. On
x86, many approaches to triggering the rowhammer bug have been
found; yet, due to several different reasons, the number of discov-
ered approaches on ARM is limited. In this paper, we revisit the
problem of how to trigger the rowhammer bug on ARM-based
devices by carefully investigating whether it is possible to trans-
late the original x86-oriented rowhammer approaches to ARM. We
provide a thorough study of the unprivileged ARMv8-A cache main-
tenance instructions and give two previously overlooked reasons
to support their use in rowhammer attacks. Moreover, we present a
previously undiscovered instruction that can be exploited to trigger
the rowhammer bug on many ARM-based devices. A potential ap-
proach to quickly evicting ARM CPU caches is also discussed, and
experimental evaluations are carried out to show the effectiveness
of our findings.

CCS CONCEPTS
• Security and privacy→ Embedded systems security;Hard-
ware attacks and countermeasures;

KEYWORDS
Hardware Faults, Rowhammer, Microarchitectural Attacks

ACM Reference Format:
Zhenkai Zhang, Zihao Zhan, Daniel Balasubramanian, Xenofon Koutsoukos,
and Gabor Karsai. 2018. Triggering Rowhammer Hardware Faults on ARM:
A Revisit. In The Second Workshop on Attacks and Solutions in Hardware
Security (ASHES’18), October 19, 2018, Toronto, ON, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3266444.3266454

1 INTRODUCTION
As a basic security requirement, data in memory should be pro-
tected from unauthorized modifications; otherwise, the integrity of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASHES’18, October 19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5996-2/18/10. . . $15.00
https://doi.org/10.1145/3266444.3266454

a system and its computations cannot be trusted. Through the years,
there have been many efforts in both software and hardware to-
wardsmeeting this requirement, resulting inmature techniques that
are ubiquitously employed. However, a recently revealed hardware
fault vulnerability in dynamic random-access memory (DRAM), the
so-called rowhammer bug, introduces new attack surfaces for unau-
thorized data modifications [15] – when the activation of a DRAM
row is toggled repeatedly at a high frequency, i.e., hammered, some
bit(s) may flip in some physically adjacent row(s).

The existence of the rowhammer bug has been reported in vari-
ous DRAM chips of different types [2, 15, 16, 27]. Since its discovery,
this hardware bug has been continuously exploited to form a wide
range of powerful rowhammer attacks. Examples of such attacks
include privilege escalation [6, 10, 11, 24, 27, 29], cryptography
breaking [5, 23], ASLR defeating [8], sandbox escaping [11, 22, 24],
and denial-of-service [14, 19, 30] etc. Furthermore, instead of ex-
ecuting code locally to induce bit flips, new rowhammer attacks
have been effectively demonstrated by only sending network pack-
ets [19, 26].

Many of the rowhammer attacks are performed on the x86 archi-
tecture. As ARMhas become the de facto architecture used inmobile
computing devices, there have been attempts to translate the x86-
targeted rowhammer exploitation techniques to ARM. However, as
discussed in [27], this adaption is non-trivial.

Among themany technical challenges, how to trigger the rowham-
mer bug on ARM-based devices needs to be addressed first and
foremost; otherwise, even if the underlying DRAM were extremely
vulnerable to hammering, one would still not be able to exploit
the bug for a successful rowhammer attack. In order to trigger the
rowhammer bug, a prerequisite is the ability to access the same
location in DRAM rapidly. However, due to the presence of the
CPU caches, most of the memory accesses to the same location
can hardly reach the DRAM. Thus, how to circumvent the effect
of the caches becomes the key to triggering the bug. On x86, three
approaches to coping with the cache effect have been proposed:
flushing the cache by using the CLFLUSH instruction [15], bypassing
the cache by using certain non-temporal memory access instruc-
tions [22], and evicting the cache by using some good cache eviction
strategies [4, 11]. However, it is either impractical or somehow not
appreciated to adapt these approaches to ARM (more details are
described in later sections). As a result, two approaches from other
angles have been proposed to effectively address the cache effect
on ARM: taking advantage of the user accessible DMA buffers on

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

24

https://doi.org/10.1145/3266444.3266454
https://doi.org/10.1145/3266444.3266454

the Android system to bypass the CPU caches [27]; and, evicting
the relatively simple caches of the integrated GPU to achieve fast
accesses to the main memory [8].

In this paper, we revisit the problem of how to trigger the rowham-
mer bug on ARM-based devices, by carefully investigating whether
it is possible as well as reasonable to translate the original x86-
oriented approaches to ARM. We share our findings and point out
some previously overlooked factors.

The main contributions of this paper are: (1) We provide a thor-
ough study of the unprivileged ARMv8-A cache maintenance in-
structions, and give two previously overlooked reasons to support
their use in rowhammer attacks; (2) We present a previously undis-
covered instruction that can be exploited to trigger the rowhammer
bug on many ARM-based devices; (3) We discuss a potential ap-
proach to quickly evicting the CPU caches; (4) We perform experi-
mental evaluations to demonstrate the effectiveness of our findings.

The rest of this paper is organized as: Section 2 briefly sets the
background; Section 3 formulates the problem considered in this
paper; Section 4 presents our investigation as well as our findings;
Section 5 evaluates different approaches of this paper; Section 6
describes possible mitigation techniques; Section 7 gives the related
work; and Section 8 concludes this paper and states some future
work.

2 BACKGROUND
In this section, we present some necessary background information
on targeted ARM processors, DRAM, and the rowhammer bug as
well as attacks. Additionally, we present the two existing approaches
to triggering the rowhammer bug on ARM-based devices.

2.1 ARMv7-A v.s. ARMv8-A
ARM is a general term for a family of RISC architectures. Rowham-
mer attacks on ARM generally refer to such attacks on consumer
devices or network infrastructures that are based on either ARMv7-
A or ARMv8-A processors. The ARMv7-A architecture is only 32-bit,
while the ARMv8-A architecture, released in 2011, supports both 32-
bit and 64-bit computing. Although ARMv7-A processors are still
in use, ARMv8-A processors have already become the mainstream
processors currently used in the industry. In this paper, we focus on
the rowhammer approaches targeting the ARMv8-A architecture.

2.2 DRAM Organization
Modern computing devices use DRAM as the main memory. For
better memory bandwidth, DRAM is often partitioned into multiple
channels. Each channel can be associated with multiple ranks, and
each rank has multiple banks. As depicted in Fig. 1, each bank can be
viewed as a two-dimensional array of cells, organized in rows and
columns. Each cell consists of a capacitor and a transistor, where
the capacitor is either charged or uncharged to represent a single
binary value1, and the transistor is used to access the capacitor. In
each bank, there is also a row buffer, which can hold the contents
of a single row. To access a cell, the corresponding row has to be
activated first to put the contents of the row into the row buffer,
and then the access is served from the row buffer. An activated
1Depending on the implementation, some cells use the charged state to represent ‘1’,
while other cells use the discharged state to represent ‘1’.

Aggressor Row

Victim Row

Aggressor Row

Row Buffer

Cell

bitline

wordline

Figure 1: DRAM organization and an illustration of double-
sided rowhammer, where the red aggressor rows sandwich
the blue victim row.

row remains in the row buffer until being closed by the memory
controller, and before then, consecutive accesses to that row will be
served directly from the row buffer. Depending on what memory
controller policy is being used, an active row can be closed due
to different reasons: if the memory controller uses an “open-page”
policy, the active row will not be closed until a different row in the
same bank is accessed; on the other hand, if a “closed-page” policy
is employed, the memory controller can proactively close the row
to optimize performance [10, 19].

Without intervention, a cell can only keep its charged state
for a short period of time, because its capacitor leaks the charge
over time. In order to prevent any data loss, the cells must be
refreshed regularly. DDR3 and DDR4 specifications require that
the refresh interval must not be longer than 64ms. Normally, the
refresh interval is between 32ms to 64ms.

2.3 Rowhammer Bug and Attacks
As the cells in DRAM are getting increasingly smaller and denser,
the overall DRAM reliability is significantly impacted in a negative
way. First thoroughly studied in [15], the rowhammer bug has be-
come the most well-known DRAM reliability issue: When a DRAM
row is repeatedly activated and closed (namely, hammered) enough
times within a refresh interval, one or more bits in its physically
adjacent rows can be flipped to the opposite value2. Usually, a row
that is hammered is called an aggressor row, and a row that has
flipped bits is called a victim row.

Since many of the memory controllers use “open-page” policies,
to trigger the rowhammer bug on such systems, two aggressor
rows in the same bank need to be alternately activated. If the two
aggressor rows are not intentionally chosen to “sandwich” a row,
it is termed as single-sided rowhammer. On the other hand, if the
two aggressor rows lie on both sides of another row, it is called
double-sided rowhammer (Fig. 1 shows an illustration of double-
sided rowhammer). As demonstrated in practice, the double-sided
rowhammer is much more effective and efficient than the single-
sided rowhammer [24]. Some new memory controllers may use
“closed-page” policies, and in such cases even one aggressor row is

2The large current coupled with toggling the activation of a row repeatedly and rapidly
accelerates the discharging rate of cells in the physically adjacent rows. Before the
next refresh, if too much charge in a cell has been leaked, the stored bit information
will be lost, namely the bit is flipped.

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

25

sufficient to induce bit flips around the row, which is called one-
location rowhammer [10].

Because the rowhammer bug allows one to modify the contents
of a row without accessing it, severe security risks are posed. Since
the discovery of this devastating hardware vulnerability, many
rowhammer attack vectors have been developed by exploiting the
rowhammer bug to compromise the security defenses of a system.
Usually, to successfully perform a rowhammer attack, an adver-
sary not only needs the ability to trigger the rowhammer bug on
the targeted system, but also needs to be capable of steering the
targeted security-critical data to vulnerable rows for exploitation.
Several methods for helping exploit the rowhammer bug have been
developed, such as memory spraying [24], memory grooming [27],
memory waylaying [10], and memory ambushing [7]. Nevertheless,
having approaches to triggering the rowhammer bug is always the
prerequisite for a successful rowhammer attack.

2.4 Existing Rowhammer Approaches on ARM
Asmentioned before, it is very challenging to adapt the x86-oriented
rowhammer approaches to ARM. For example, an undisclosed pro-
prietary pseudo-random cache replacement policy is used in ARM
processors, so the most efficient and effective cache eviction strat-
egy has to be empirically searched [9, 20]. However, it has been
shown that even the best eviction strategy that can be found is still
too slow to trigger the rowhammer bug [27].

To address the problem of quickly accessing the DRAM to trig-
ger the rowhammer bug on ARM, two approaches have been pro-
posed so far. Since memory regions allocated for I/O devices are
often marked as non-cacheable to avoid any use of stale data, the
first approach takes advantage of the DMA buffers exposed to the
userspace by the Android ION memory management interface [27].
(However, a recently proposed mitigation has made the rowham-
mer bug triggered in this way non-exploitable [28].) The second
approach relies on the observation that the integrated GPU in an
ARM SoC (system-on-chip) often has relatively simple and small
caches with a deterministic replacement policy; thus, by cleverly
evicting the integrated GPU cache, the main memory can be quickly
accessed [8].

3 PROBLEM STATEMENT
In this paper, we only focus on finding more approaches to trigger-
ing the rowhammer bug on platforms that use ARMv8-A processors.
In other words, we do not consider how to identify addresses for the
most efficient double-sided rowhammer, nor do we investigate how
to exploit the rowhammer bug to compromise a system. Specifically,
we will try to answer the following two questions:
• Is it possible as well as reasonable to adapt the original x86-
oriented rowhammer approaches to ARMv8-A?
• Is there any “good” special ARMv8-A instruction that can
be used to effectively hammer the underlying DRAM? If so,
how can it be used?

4 NEW EXPLORATION
In this section, we first investigate the rowhammer methods based
on some unprivileged cache maintenance instructions, and provide
some arguments to support their practicability and “tenaciousness”.

Then, we present how to utilize a commonly-found instruction
to bypass the cache in most of the ARMv8-A processors, which
enables us to hammer the DRAM easily. In addition, we discuss a
possible method for triggering the rowhammer bug by evicting the
CPU caches.

4.1 Flushing/Cleaning the Cache
The original rowhammer approach targeting the x86 architecture
uses the unprivileged CLFLUSH instruction to flush the data associ-
ated with an address from the cache hierarchy [15]. The availability
of such an instruction greatly facilitates an adversary to repeatedly
access the same DRAM locations at a high frequency. While the
ARM instructions managing caches (termed as cache maintenance
instructions) are privileged in all of the ARMv7-A processors, they
have been exposed to the userspace since ARMv8-A. Therefore,
it becomes feasible to use rowhammer approaches similar to the
original CLFLUSH-based one on devices using ARMv8-A processors.

put addr1 into X9
put addr2 into X10
for i := 0 to N − 1 do

LDR X0, [X9]
LDR X0, [X10]
DC CIVAC, X9
DC CIVAC, X10
DSB 0xB

(a) using DC CIVAC

put addr1 into X9
put addr2 into X10
for i := 0 to N − 1 do

STR X0, [X9]
STR X0, [X10]
DC CVAC, X9
DC CVAC, X10
DSB 0xB

(b) using DC CVAC

Figure 2: Using cache maintenance instructions to perform
rowhammer,whereN is the number of iterations of theham-
mering loop.

The unprivileged ARMv8-A cache maintenance instructions can
be classified into two categories3:
• Instructions related to the Point of Unification (PoU): the DC
CVAU instruction cleans data cache by virtual address to PoU,
and the IC IVAU instruction invalidates instruction cache
by virtual address to PoU.
• Instructions related to the Point of Coherency (PoC): the DC
CIVAC instruction cleans as well as invalidates data cache
by virtual address to PoC, and the DC CVAC instruction only
cleans data cache by virtual address to PoC.

PoU is the point at which the instruction and data caches are guar-
anteed to see the same copy of a memory location, while PoC is
the point at which all processing elements that can access memory
are guaranteed to see the same copy of a memory location [18].
Although PoU and PoC are not explicitly specified in the reference
manual, typically PoU is defined as the unified L2 cache and PoC is
specified as the main memory. Therefore, we can only use the PoC-
related cache maintenance instructions as the counterpart of the
x86 CLFLUSH instruction. Fig. 2 shows two examples that demon-
strate the original x86-oriented rowhammer approach on ARMv8-A,
3There is actually another unprivileged cache maintenance instruction DC CVAP that
is related to the Point of Persistence (PoP), but we omit its discussion, since PoP is
either equal to PoC or associated with non-volatile storage.

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

26

where two virtual addresses addr1 and addr2 are physically mapped
to two different DRAM rows in the same bank.

Note that, in Fig. 2 (b), it is each of the DC CVAC instructions that
accesses the underlying DRAM in each loop iteration. The first two
store instructions (i.e. STR) always hit in the L1 data cache after
the first iteration, and make the corresponding cache lines dirty. In
other words, if the DC CVAC instruction is used, it has to be paired
up with a store instruction; otherwise, the cache lines will not be
dirty, and by cleaning them, nothing will happen to the memory
system. On the contrary, if the DC CIVAC instruction is used, it can
be paired up with either load or store instructions. (For instance, in
Fig. 2 (a), two load instructions LDR are used.) This is because the
execution of the DC CIVAC instruction not only cleans the cache
lines, but also invalidates these cache lines; as a result, the memory
blocks will always be fetched from the memory in the next iteration.
In addition, the last DSB instructions in both Fig. 2 (a) and (b) are
memory barrier instructions, which force all pending load, store,
and cache maintenance instructions to be completed before the
program execution continues.

Although these exploitable cache maintenance instructions are
unprivileged by default, there is a system control register which
can be set by the kernel to disable the use of these instructions in
the userspace [18]. This is why the use of such instructions is not
considered as a good rowhammer (or side-channel) exploitation
primitive [27, 31]. However, here we argue that it is in fact a simple
and good facility due to two main reasons.

(1) Disabling the use of the exploitable cache maintenance in-
structions will make certain applications non-runnable. Since
the ARM architecture does not maintain coherency between
the instruction and data caches, flushing the cache is a nec-
essary step towards supporting self-modifying code (e.g.,
Just-in-Time compilation). On Linux systems (including An-
droid), the GCC builtin function __builtin___clear_cache()
is called to flush the cache. Under the hood, the function
makes a system call, whose system call number is 0xF0002,
on ARMv7-A. However, on ARMv8-A, the compiler will gen-
erate a sequence of instructions using the PoU-related DC
CVAU and IC IVAU instructions to mange the cache directly
in the userspace. The differences are illustrated in Fig. 3.
There is only one bit in the system control register that en-
ables/disables the use of all unprivileged cache maintenance
instructions in the userspace. Therefore, disabling the ex-
ploitable PoC-related cache maintenance instructions will
unfortunately also make the needed PoU-related ones unus-
able in the userspace, which will cause problems in many
existing applications.

(2) It may be very difficult to disable these instructions on certain
platforms.We have noticed that there is a cache maintenance
exception handler in the Linux kernel introduced since ver-
sion 4.8 for 64-bit ARMv8-A processors4. (Linux kernel 4.10
has been used in the latest Android.) In this case, even if
these exploitable cache maintenance instructions were dis-
abled by a kernel module, the exceptions raised by executing
such instructions would trap into the kernel and the han-
dler would use the corresponding instructions to take care

4The trap handler is implemented in arch/arm64/kernel/traps.c.

of the desired cache operations5. Note that, although such
handlers are designed to run as fast as possible, compared
to single instructions, their execution time may be still too
long to trigger the rowhammer bug on some platforms. A
parallelization technique can be used to address this problem,
which is described in Section 5.2.

Based on the two above-mentioned (yet overlooked) reasons, we
believe that the PoC-related cache maintenance instructions can be
relied on to hammer the DRAM rows on ARMv8-A processors.

 <__clear_cache>:

 MOV R7, #983034
 ADD R7, R7, #2
 MOV R2, #0
 SVC 0x00000000

 Application ...
...

...
...

...
...

...

Userspace

System Call Interface

 System Calls

 __ARM_NR_cacheflush

Kernelspace

...
...

(a) ARMv7-A

 Application

 <foo>:

 BL <__clear_cache>

 <__clear_cache>:

 B <__aarch64_sync_cache_range>

 <__aarch64_sync_cache_range>:

 DC CVAU, X2

 IC IVAU, X0

 RET

Userspace

(b) ARMv8-A

 <foo>:

 BL <__clear_cache>

...

...
...

...
...

...
...

...
...

...
...

...

Figure 3: __builtin___clear_cache() used in a userspace func-
tion foo()will invoke a library function __clear_cache() that
will (a) make a system call to __ARM_NR_cacheflush (i.e.,
0xF0002) on ARMv7-A; yet will (b) call another library func-
tion __aarch64_sync_cache_range() to clear the cache all in
user mode on ARMv8-A.

Also, note that, although the DC CIVAC instruction is the one
that is normally mentioned and compared in the literature, we find
that the DC CVAC instruction is actually a much faster and thus
better option for being used in rowhammer attacks, as evaluated
in Section 5. On some platforms, the DC CIVAC instruction may be
too slow to trigger the rowhammer bug. In that case, we can take
advantage of parallelization to make the DC CIVAC-based approach
work.

4.2 Bypassing the Cache
Data referenced by a program can be temporal (namely, the data
will be used again in the near future), or non-temporal (namely,
the data are used only once but not again in the near future). For
example, streaming data are usually non-temporal and should not
be cached in order to avoid cache “pollution”. Therefore, some
architectures introduce non-temporal memory access instructions,
which can be used to directly access the memory and prevent non-
temporal data from “polluting” the cache. This bypassing-the-cache

5The DC CVAC instruction is treated as the DC CIVAC instruction in the handler.

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

27

feature can greatly facilitate rowhammer attacks, as shown in [22]
on the x86 architecture.

Although the ARMv8-A instruction set contains non-temporal
load and store instructions (which are the LDNP and STNP instruc-
tions respectively), it is believed that they are not useful for trig-
gering the rowhammer bug. As stated in [27], these ARMv8-A non-
temporal memory access instructions only provide a hint to the
memory system that data caching is not required, and in practice,
the data are still found cached.

However, we discover that there is another instruction, the DC
ZVA instruction, which can be exploited to bypass the cache in
some ARMv8-A processors. The DC ZVA instruction is introduced to
efficiently zero out a block of memory6. The ARMv8-A architecture
reference manual makes no statements about whether or not the
DC ZVA instruction causes allocation to any particular level of the
cache [18]; yet, we notice that the DC ZVA instruction in our tested
Cortex-A53 processors does not cause an L1 or L2 allocation, if it
misses in the cache hierarchy, namely it writes zero directly to the
main memory. Indeed, the Cortex-A53 technical reference manual
confirms this behavior [17].

The DC ZVA instruction is unprivileged, so it can be executed in
the userspace. In order to trigger the rowhammer bug, we need to
use the DC ZVA instruction to alternately activate two different rows
in the same bank fast enough. Given two virtual addresses addr1
and addr2, which are physically mapped to two different DRAM
rows of the same bank, the pseudo code shown in Fig. 4 can be used
to achieve the goal. Both code in Fig. 4 (a) and (b) can work, and the
only difference lies in that code in Fig. 4 (b) does not use the mem-
ory barrier instruction DSB. In terms of CLFLUSH-based rowhammer
attacks on x86, Xiao et al. have witnessed that it is more effective
to induce bit flips without memory barrier instructions [29]. In-
terestingly, we also observe similar results when conducting the
experiments on ARM, which will be detailed in Section 5.

When using the DC ZVA instruction to trigger the rowhammer
bug, one requirement is that we have to make sure the blocks
being zeroed are not cached in the hierarchy before the hammering
loop; otherwise, the underlying DRAM will not be accessed, and
only the cached copies are zeroed and marked as dirty. This is
totally different from using the non-temporal store instructions
for rowhammer attacks on x86, where cached memory accesses to
the same addresses written by the non-temporal store instructions
need to be performed in each loop iteration so as to avoid undesired
write combining behavior [22]. To meet this requirement, we can
either simply use the DC CIVAC instruction or access corresponding
cache eviction sets, as indicated by the third and fourth lines in
Fig. 4 (a) and (b). A cache eviction set is a set of congruent addresses
that are mapped to the same cache set. (To speed up eviction a bit,
we can follow the work described in [11, 20] to derive good cache
eviction strategies.)

Note that, so far, we have only found the DC ZVA instruction
of the Cortex-A53 processors has the aforementioned no-write-
allocate property. Cache misses incurred by DC ZVA in other 64-bit
Cortex-A family members (like Cortex-A57) still cause allocations
in the hierarchy. However, we argue that this situation does not limit

6As stated in the ARMv8-A architecture reference manual [18], despite its mnemonic,
DC ZVA is not a data cache maintenance instruction.

put addr1 into X9
put addr2 into X10
invalidate/evict addr1
invalidate/evict addr2
for i := 0 to N − 1 do

DC ZVA, X9
DC ZVA, X10
DSB 0xB

(a) w/ mem. barriers

put addr1 into X9
put addr2 into X10
invalidate/evict addr1
invalidate/evict addr2
for i := 0 to N − 1 do

DC ZVA, X9
DC ZVA, X10

(b) w/o mem. barriers

Figure 4: Using the DC ZVA instruction to perform rowham-
mer, where N is the number of iterations of the hammering
loop.

the practical utility of our DC ZVA-based approach too much. The
main reason is that the use of Cortex-A53 actually prevails among
the 64-bit ARM-powered computing devices (e.g., smartphones and
tablets): Due to its high power efficiency and good performance,
Cortex-A53 is either used in a standalone fashion in many low-
/middle-end products, or integrated in the big.LITTLE architecture
alongside more powerful cores for many high-end products. Tab. 3
in the appendix shows the dominant presence of Cortex-A53 in the
popular SoCs used by major mobile device companies.

Despite its effectiveness in bypassing the cache, the direct use
of the DC ZVA instruction from userspace can be disabled by the
kernel. Unlike the cache maintenance instructions, there is no trap
handler in the kernel to deal with the exception caused by execut-
ing the disabled DC ZVA instruction, namely, the disabling-based
countermeasure works in this case. Nevertheless, we have not seen
any operating system that disables the use of the instruction by de-
fault, so it is still a valid exploitation primitive. Moreover, there are
many applications/libraries using this instruction for performance
benefits, e.g., the instruction is found in the memset() function of
the Bionic, glibc, uClibc, and Newlib C library implementations,
which makes it very difficult, if not impossible, to disable the use
of this instruction.

4.3 Discussion on Evicting the Cache
Except for the work presented in [8], which triggers the rowham-
mer bug on ARM platforms by cleverly evicting GPU FIFO caches,
to the best of our knowledge, there is no existing work that can
successfully induce this hardware fault on ARM by only evicting
CPU caches. As mentioned before, the main reason is that a good
eviction strategy can be much slower than required for triggering
the bug [27]. Due to the pseudo-random replacement policy and
relatively large associativity used in the last level cache (LLC), it
is very challenging to speed up the eviction process. As reported
in [20], thousands of clock cycles may be consumed when reaching
a desirable eviction rate.

Recently, an undocumented transparent lockdown feature, named
as autolock, has been reported in [9]. It is claimed that cache lines
in the inclusive LLC will be implicited locked if their contents are
also in core-private caches, in which case cross-core cache eviction
will be impeded. According to [9], this autolock feature seems to

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

28

appear in many ARMv8-A processors. Since almost every widely
used ARMv8-A processor has at least quad cores, one idea is to
spawn as many threads as there are cores to lock down some cache
lines of the same cache sets in LLC; the effect will be equivalent to
reducing the associativity of LLC. Thus, the eviction process can
be accelerated. (A similar idea taking advantage of Intel’s cache
allocation technology has been demonstrated on x86 platforms [1].)

Take the commonly-seen quad-core Cortex-A53 for an example,
in which the autolock feature is reported to exist [9]. A Cortex-A53
processor by design has a unified L2 cache which is 16-way set
associative, and each core privately has a 2-way instruction cache
and a 4-way data cache. The L2 cache is only inclusive to the L1
instruction caches, but not to the L1 data caches [9, 25]7. Thus, in
terms of an L2 cache set, each core can try to lock down two ways of
the set (by a carefully designed return-oriented method [31]). Since
only eight ways in the cache set are left for allocation, the speed of
the eviction process may at least be doubled. Unfortunately, we do
not observe the transparent locking behavior on our experimental
Cortex-A53 platform. On the other hand, even if these cache lines
were successfully locked, it is not clear to us whether the 2x speedup
could possibly trigger the rowhammer bug, since each good eviction
might still take more than a thousand clock cycles. We leave this
as our future work for further investigation.

5 EVALUATION
In this section, we evaluate the approaches described in Section 4
by testing their ability to trigger the rowhammer bug. In order to
facilitate comparison, we will use the number of unique bits that
are flipped as a metric.

We carry out all our experiments on a single-board computer
equipped with a quad-core Cortex-A53 processor (Amlogic S905X
SoC) and 2GB LPDDR3 memory. A Linux runs on this board, whose
kernel version is 4.14. Since we only concentrate on approaches
to triggering the rowhammer bug on ARM in this paper, for the
sake of simplicity, we just take advantage of the /proc/self/pagemap
interface to easily acquire the physical addresses for double-sided
rowhammer.

5.1 Effectiveness of Approaches
At first, we perform 4 pairs of experiments, which cover well the
combinations of the hammering techniques discussed in this paper.
Inside each pair, the only difference is whether the memory barrier
instruction DSB is used. The experiment pairs are listed as follows:
• {LDR + DC CIVAC + DSB} and {LDR + DC CIVAC}
• {STR + DC CIVAC + DSB} and {STR + DC CIVAC}
• {STR + DC CVAC + DSB} and {STR + DC CVAC}
• {DC ZVA + DSB} and {DC ZVA}

For these experiments, 10,000 pairs of aggressor rows are selected to
perform double-sided rowhammer. The results are shown in Fig. 5,
where the horizontal axis represents the hammered aggressor row

7The Cortex-A53 reference manual does not explicitly describe the inclusiveness of
its L2 cache, and conflicting statements on the data cache side exist in the literature.
Some state the L2 cache is inclusive to the L1 data caches [31], while others claim
it is non-inclusive [9, 25]. We confirm that the Cortex-A53 L2 cache is not inclusive
on the data cache side through many experiments, but we are not sure whether it is
non-inclusive or exclusive (as some exclusiveness behavior appears).

pairs and the vertical axis gives the number of unique bit flips (both
1→ 0 and 0→ 1).

LDR + DC CIVAC STR + DC CIVAC STR + DC CVAC DC ZVA
0

10

20

30

40

50

60

70

80

#
 B

it
 F

lip
s

Without DSB

With DSB

Figure 5: Number of bit flips induced by different hammer-
ing techniques.

From the results, we can clearly see that all the approaches are
effective in inducing bit flips, but with different performance (i.e.,
how many unique bits can be flipped). We find the four approaches
based on the most well-known DC CIVAC instruction perform much
worse than other approaches – they only induce 6 bit flips at most.
(Later, we will show how to make them more effective and efficient
by taking advantage of parallelization.) The best performance is
given by the {STR + DC CVAC} approach, which can flip 76 bits. In
addition, the {STR + DC CVAC + DSB} approach as well as both
the DC ZVA-based approaches also perform well. This phenomenon
may be due to the fact that the DC CIVAC instruction makes the
subsequent memory access take much longer time than other cases,
as cache lines have been invalidated and need to be refilled.

When using the combination of the STR and DC CIVAC instruc-
tions in the hammering loop, four accesses to the DRAM should
be generated in a single iteration – two of them are due to the
cache misses of the STR instructions, and the other two are due
to cleaning the dirty cache lines by the DC CIVAC instructions. At
first, we have expected that this situation may help the hammering
efficiency. However, by comparing the results in Fig. 5, it shows
this combination actually reduces the number of bit flips, which is
contrary to our expectation. We can also observe that the use of the
memory barrier instruction DSB decreases the number of bit flips
in all the cases, particularly, with respect to the approaches based
on the DC CVAC and DC ZVA instructions. A similar observation is
also reported in [29] for the x86 architecture. Therefore, they show
that memory barrier instructions are not necessarily required when
performing rowhammer on either x86 or ARM.

According to [27], if the time between two reactivations of an
aggressor row is above 260 ns, it can barely trigger the rowhammer
bug on ARM. We measure the time needed by a hammering loop
iteration, and the times for different approaches are shown in Tab. 1.
From the measured times, we can observe that a hammering loop
iteration needs more than 260 ns only in the last two approaches
(i.e., by combining the STR and DC CIVAC instructions). However,
as mentioned above, there are four alternating accesses to the two
aggressor rows within a single loop iteration in terms of the last two

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

29

Table 1: Time of a hammering loop iteration.

Technique Average Time
{DC ZVA} ~70 ns

{DC ZVA + DSB} ~72 ns
{STR + DC CVAC} ~99 ns

{STR + DC CVAC + DSB} ~119 ns
{LDR + DC CIVAC} ~249 ns

{LDR + DC CIVAC + DSB} ~250 ns
{STR + DC CIVAC + DSB} ~313 ns (two)

{STR + DC CIVAC} ~331 ns (two)

approaches, namely, each row is hammered twice. Even though
the time may not be evenly distributed within a loop iteration, the
time between two reactivations of the same row should be less than
260 ns.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Iterations 10
6

0

10

20

30

40

50

60

70

80

#
 B

it
 F

lip
s

LDR + DC CIVAC

STR + DC CIVAC

STR + DC CVAC

DC ZVA

Figure 6: The impact of the number of iterations on the num-
ber of bit flips in terms of different hammering techniques.

Another important factor we evaluate is how many iterations
a pair of aggressor rows should be hammered. Interestingly, we
have found that the number of hammering loop iterations may
have a significant impact on flipping bits in both the DC ZVA- and
DC CVAC-based techniques. Fig. 6 shows the relationship between
the number of iterations and the number of bit flips for different
approaches (without using the DSB instruction) adopted to hammer
the same set of aggressor row pairs in a double-sided manner. As
we can observe, when some pairs of aggressor rows are hammered
about 200,000 times, bits start flipping. However, in terms of the
DC ZVA- and DC CVAC-based techniques, when the number of loop
iterations increases, more bits become flipped. (When the number of
iterations is above 2,500,000, there are much more bit flips than that
of iterating below 1 million times.) Since a hammering loop with
millions of iterations spans several refresh intervals, we conjecture
that some bits can be flipped with a relatively small probability
when aggressor rows are hammered above certain times within a
refresh interval (yet the DC CIVAC-based approaches are too slow
to reach this limit) and these bits become very likely to be flipped
after several consecutive attempts.

5.2 Disabling Special Instructions and
Parallelization

We also use a kernel module to disable the use of the DC CIVAC, DC
CVAC, and DC ZVA instructions in the userspace. As expected, the
hammering process relying on the DC ZVA instruction is terminated
due to an illegal instruction exception; yet, the other processes using
the cache maintenance instructions are still runnable. To verify
this is because there exists a trap handler for cache maintenance
instructions, we also repeat the same procedure on another installed
Linux, whose kernel version is 4.4. In this case, all the processes
are terminated, which proves our reasoning.

We perform the first three experiment pairs again after the direct
use of the corresponding instructions is disabled. Unfortunately,
we observe that the execution time of a hammering loop iteration
becomes too long to trigger the rowhammer bug (e.g., ~560 ns in
terms of the {STR + DC CIVAC}). However, we discover that, with
parallelization, it becomes possible to trigger the rowhammer bug
again after the cache maintenance instructions are disabled. Since
almost every widely used ARMv8-A processor has at least quad
cores, we can parallelize the hammering loop using two threads,
each of which runs on a separate core and accesses one of the
aggressor rows. Therefore, the independentmemory access requests
from different cores may flow into the memory controller at almost
twice the speed than before.

LDR + DC CIVAC STR + DC CIVAC STR + DC CVAC STR + DC CVAU
0

10

20

30

40

50

60

70

80

#
 B

it
 F

lip
s

Cache Maint. Instr. Enabled

Cache Maint. Instr. Disabled

Figure 7: The number of bit flips induced before and after
the unprivileged instructions are disabled (parallelization is
used after the instructions are disabled).

By using this parallelization technique, the hammering loop can
again induce bit flips after the cache maintenance instructions are
disabled. The results of parallel hammering attempts are shown
in Fig. 7. (For comparison, the numbers of bit flips induced before
the instructions are disabled are also shown in the figure.) Since
the overhead of the trap handler is still very large, the numbers
of bit flips become less than before in all the cases. Nevertheless,
we can still observe that it is feasible to trigger the rowhammer
bug when using a parallelized hammering process. Surprisingly,
we do not identify any bit flip in the case of the {LDR + DC CIVAC}
approach, and we notice that the PoU-related DC CVAU instruction
even becomes capable of reaching PoC to hammer the DRAM. By
carefully studying the trap handler, we find that both the DC CVAC

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

30

and DC CVAU instructions are treated as the DC CIVAC instruction
in that handler. This explains why they perform very similarly and
the DC CVAU instruction can be used to trigger the rowhammer bug
when the use of the unprivileged cache maintenance instructions
in user mode is disabled.

LDR + DC CIVAC STR + DC CIVAC
0

20

40

60

80

100

120

#
 B

it
 F

lip
s

1-thread

2-thread

Figure 8: The number of bit flips induced by one hammer-
ing thread and two hammering threads when cache mainte-
nance instructions are still usable in user mode.

Additionally, this parallelization technique can be applied to the
DC CIVAC-based approaches to increase their performance even if
the cache maintenance instructions are not disabled for use in user
mode. Fig. 8 shows the results when using two threads to repeat
the experiments with respect to the {LDR + DC CIVAC} and {STR
+ DC CIVAC}. From the results, we can see the number of bit flips
grows drastically when two threads are used. (In order to facilitate
comparison, the numbers induced in single-thread hammering pro-
cesses are also shown in the figure.) Interestingly, in this case, the
combination of the LDR and DC CIVAC instructions performs much
better than that of the STR and DC CIVAC instructions (122 and 30
bit flips respectively). Originally, we think this may be due to syn-
chronization issues. However, after a few trials, the big difference
still remains. We will investigate this interesting phenomenon in
detail in the future.

5.3 Monitoring Cache Misses
Many performance monitoring counter-based rowhammer detec-
tion approaches have been proposed for x86 [4, 12, 13, 21]. Because
a large number of cache misses will be incurred if cache lines are
repeatedly invalidated during a rowhammer attempt, the basic idea
of such approaches is to capture and analyze activities that generate
anomalous amount of cache misses. Thus, these defense techniques
inevitably depend on the cache miss event counters inside the CPU.
There is a performance monitoring unit (PMU) in each ARMv8-A
processor, which has a register counting how many LLC misses
have been encountered. As a result, these performance monitor-
ing counter-based rowhammer detection approaches can also be
applied to ARMv8-A.

We expect that the approaches based on the DC CVAC instruction
will not increase the LLC cache miss counter, since the DC CVAC
instruction only cleans the dirty cache line but does not invalidate
it. Moreover, we anticipate other approaches based on either the

DC CIVAC instruction or the DC ZVA instruction will increase the
counter. The reason in terms of the DC CIVAC instruction is obvious,
and the reason why we expect such a result in terms of the DC ZVA
instruction is that the DC ZVA instruction only accesses the main
memory when it misses in the cache hierarchy.

Table 2: Number of L2 cache misses in 5,000,000 hammering
loop iterations

Tech. {LDR + DC CIVAC} {STR + DC CIVAC} {STR + DC CVAC} {DC ZVA}

Miss 10,000,058 9,999,725 70 5

For each pair of the experiments performed in Section 5.1, we
measure how many L2 (which is the LLC in the used processor)
cache misses are incurred during 5,000,000 iterations of the ham-
mering loop. Since the memory barrier instruction does not affect
L2 cachemisses at all, we only list the numbers corresponding to the
techniques without using the DSB instruction in Tab. 2. To our sur-
prise, one of our anticipations is not correct – the execution of the
DC ZVA instruction does not increase the counter although it misses
in the cache. On the other hand, it means the cache miss counter-
based rowhammer detection approaches will not work with respect
to the two most efficient rowhammer-triggering instructions. (Most
of the L2 cache misses in the last two columns are probably due
to context switches.) Another interesting phenomenon is the num-
ber of L2 cache misses when using the combination of the STR
and DC CIVAC instructions is less than 10,000,000. This may be
because some writing operations are reordered and combined in
the memory system since the DSB instruction is not used.

6 MITIGATION APPROACHES
There have been several mitigation techniques being proposed to
cope with the rowhammer problem in general. Since the rowham-
mer bug is a hardware reliability issue, some of the approaches
try to solve the problem from the perspective of hardware: By us-
ing error correcting codes (ECC) memory, single-bit flips can be
detected and corrected, but it cannot deal with multiple-bit flips.
In [15], a probabilistic adjacent row activation (PARA) approach is
proposed to refresh neighboring rows on a row activation with a
low probability so that the potential victim rows are very likely to
be refreshed during a rowhammer attack. However, memory con-
troller modifications need to be made, which prevents it from being
practically used. The target row refresh (TRR) technique is intro-
duced in the LPDDR4 standard [3], which identifies possible victim
rows by counting the number of row activations, and refreshes
these rows to prevent bit flips. However, TRR is not a mandatory
feature, so some manufacturers may not adopt it in their products.
Besides, all the hardware-based mitigation approaches are really
hard to deploy on existing ARM platforms.

To mitigate the effectiveness of the rowhammer methods dis-
cussed in this paper, the simplest software-based approach is to
increase the DRAM refresh rate. Different from PCs on which the re-
fresh rate has to be changed via BIOS update, the memory controller
on an ARM SoC is normally configurable through memory-mapped
I/O. Although it will make rowhammer more difficult, increasing
the refresh rate too much will hurt the system performance and

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

31

energy efficiency, which may not be acceptable in many cases. An-
other straightforward countermeasure is to disable the use of these
exploitable instructions in the userspace. While this may be rela-
tively easy with respect to the DC ZVA instruction, as discussed in
this paper, the cache maintenance instructions can be hardly dis-
abled in the userspace. However, dummy operations can be added
into the cache maintenance trap handler to properly increase its
execution time, so that it becomes very hard to rapidly flush the
cache.

Since a lot of cache misses usually accompany a rowhammer
attempt, performance monitoring counters can be used to facilitate
detection [4, 12, 13, 21]. For instance, ANVIL uses the cache miss
performance counter to capture suspicious activities that cause in-
tensive cache misses, and selectively refresh possible victim rows af-
ter some analysis of the addresses associated to the cache misses [4].
However, as shown in Section 5.3, the rowhammer approach based
on either the DC CVAC instruction or the DC ZVA instruction will
barely cause cache misses, which makes the performance monitor-
ing counter-based detection ineffective. Because special instructions
are used in the proposed approaches, static binary analysis can in
effect help to identify possibly malicious code [13]. After poten-
tially malicious code is revealed, more advanced techniques or even
human can get involved to analyze this code.

7 RELATEDWORK
In [15], Kim et al. lay the groundwork of the rowhammer-related
research, which thoroughly studies the rowhammer bug on DDR3
and points out concerns about security risks. It shows the first
approach to triggering the rowhammer bug by using the CLFLUSH
instruction. Since then, much work has been done regarding how
to exploit such a hardware bug to compromise a system. In [24], the
initial exploitation attempt is shown, which successfully utilizes the
rowhammer bug to gain privilege escalation as well as escape the
Google Chrome NaCl sandbox. In [22], non-temporal store instruc-
tions are used to bypass the cache for triggering the bug. In [11],
it is demonstrated that the rowhammer bug can be triggered not
only by the native code but also by some Javascript code running
in a browser through evicting the cache. More powerful rowham-
mer attacks are also formulated by security practitioners. In [23], a
general exploitation technique, Flip Feng Shui (FFS), is proposed
and instantiated by using memory deduplication to break several
cryptographic software. In [5], cryptographic software is also tar-
geted, in which the rowhammer bug is exploited to generate a faulty
RSA signature so that the secret key can be recovered. In [29], a
graph-based approach to physical-to-DRAM address translation is
illustrated, and how to break Xen paravirtualized memory isola-
tion in a cross-VM setting is demonstrated. In [10], one-location
rowhammer combined with Intel SGX and memory waylaying is
shown to be able to defeat all the proposed rowhammer defenses.
More recently, the possibility that rowhammer attacks can be per-
formed through network has been proven [19, 26], which points
out another research direction.

As mentioned before, there are two existing approaches that
can trigger the rowhammer bug on ARM. In [27], DMA buffers,
exposed to the userspace by the Android IONmemory management

interface, are utilized to bypass the cache. However, in [28], a miti-
gation approach is proposed to make the DMA-related hammerable
area non-exploitable. In [8], fast accesses to the main memory are
enabled by evicting the integrated GPU FIFO caches.

8 CONCLUSION
So far, the rowhammer bug has been found in various types of
DRAM, which are deployed in numerous systems. The rowhammer-
related research has been performed on x86 extensively. Due to the
prevalence of ARM processors in the mobile computing devices
and network infrastructures, we believe that it is equally important
to perform similar research with respect to ARM. In this paper, we
have shown that not every factor has been considered, and many
of the overlooked conditions may have left possible vulnerabilities
behind. In the future, we plan to investigate more on how to effi-
ciently evict the cache hierarchy to trigger the rowhammer bug.
Moreover, we will also study how to exploit such vulnerabilities to
perform rowhammer attacks.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
(CNS-1739328). The authors would like to thank the anonymous re-
viewers for their comments and suggestions which help us improve
the quality of the paper.

REFERENCES
[1] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin. 2017. When

good protections go bad: Exploiting anti-DoS measures to accelerate rowhammer
attacks. In 2017 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). 8–13.

[2] Barbara Aichinger. 2015. DDR memory errors caused by Row Hammer. In 2015
IEEE High Performance Extreme Computing Conference (HPEC). 1–5.

[3] JEDEC Solid State Technology Association. 2017. Low Power Double Data Rate 4
(LPDDR4).

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,
Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL: Software-Based
Protection Against Next-Generation Rowhammer Attacks. In Proceedings of the
Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’16). 743–755.

[5] Sarani Bhattacharya and DebdeepMukhopadhyay. 2016. Curious case of rowham-
mer: flipping secret exponent bits using timing analysis. In International Confer-
ence on Cryptographic Hardware and Embedded Systems. 602–624.

[6] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup
est machina: Memory deduplication as an advanced exploitation vector. In 2016
IEEE symposium on security and privacy (S&P). 987–1004.

[7] Yueqiang Cheng, Zhi Zhang, Surya Nepal, and Zhi Wang. 2018. Still Hammerable
and Exploitable: on the Effectiveness of Software-only Physical Kernel Isolation.
CoRR abs/1802.07060 (2018). arXiv:1802.07060 http://arxiv.org/abs/1802.07060

[8] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand
Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In IEEE
Symposium on Security and Privacy (S&P).

[9] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann
Heyszl, and Thomas Eisenbarth. 2017. AutoLock: Why Cache Attacks on ARM
AreHarder Than You Think. In 26th USENIX Security Symposium (USENIX Security
17). 1075–1091.

[10] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018. Another Flip in the Wall
of Rowhammer Defenses. In 2018 IEEE Symposium on Security and Privacy (S&P).
489–505.

[11] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. 300–321.

[12] Nishad Herath and Anders Fogh. 2015. These are Not Your Grand Daddy’s CPU
Performance Counters - CPU Hardware Performance Counters for Security. In
Black Hat Briefings.

[13] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. MASCAT: Stopping
Microarchitectural Attacks Before Execution. Cryptology ePrint Archive, Report

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

32

http://arxiv.org/abs/1802.07060
http://arxiv.org/abs/1802.07060

2016/1196. https://eprint.iacr.org/2016/1196.
[14] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:

Locking Down the Processor via Rowhammer Attack. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution (SysTEX ’17). Article 5, 6 pages.

[15] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Mem-
ory Without Accessing Them: An Experimental Study of DRAM Disturbance
Errors. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture (ISCA ’14). 361–372.

[16] Mark Lanteigne. 2016. How Rowhammer Could Be Used to Exploit Weaknesses
in Computer Hardware. http://www.thirdio.com/rowhammer.pdf.

[17] ARM Limited. 2016. ARM Cortex-A53 MPCore Processor Technical Reference Man-
ual. Revision: r0p4.

[18] ARM Limited. 2017. ARM Architecture Reference Manual - ARMv8, for ARMv8-A
architecture profile.

[19] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss, Clémen-
tine Maurice, Lukas Raab, and Lukas Lamster. 2018. Nethammer: Inducing
Rowhammer Faults through Network Requests. CoRR abs/1805.04956 (2018).
arXiv:1805.04956 http://arxiv.org/abs/1805.04956

[20] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In 25th USENIX
Security Symposium (USENIX Security 16). 549–564.

[21] Mathias Payer. 2016. HexPADS: A Platform to Detect “Stealth” Attacks. In
Proceedings of the 8th International Symposium on Engineering Secure Software
and Systems - Volume 9639 (ESSoS 2016). 138–154.

[22] Rui Qiao and Mark Seaborn. 2016. A new approach for rowhammer attacks.
In 2016 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). 161–166.

[23] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the Software Stack.
In 25th USENIX Security Symposium (USENIX Security 16). 1–18.

[24] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges. In Black Hat Briefings.

[25] Anand Lal Shimpi. 2013. Answered by the Experts: ARM’s Cortex A53
Lead Architect, Peter Greenhalgh. https://www.anandtech.com/show/7591/
answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh.

[26] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuf-
frida, Herbert Bos, and Kaveh Razavi. 2018. Throwhammer: Rowhammer Attacks
over the Network and Defenses. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 213–226.

[27] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-
tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
2016. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). 1675–1689.

[28] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrishnan Pad-
manabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert Bos, and Kaveh
Razavi. 2018. GuardION: Practical Mitigation of DMA-Based Rowhammer At-
tacks on ARM. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. 92–113.

[29] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One Bit
Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation.
In 25th USENIX Security Symposium (USENIX Security 16). 19–35.

[30] Shaza Zeitouni, David Gens, and Ahmad-Reza Sadeghi. 2018. It’s Hammer Time:
How to Attack (Rowhammer-based) DRAM-PUFs. In Proceedings of the 55th
Annual Design Automation Conference (DAC ’18). 65:1–65:6.

[31] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. 2016. Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for Android Devices. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). 858–870.

APPENDIX
Tab. 3 lists widely used 64-bit ARM-based SoCs, which are made
by major chip manufacturers for mobile computing devices. Qual-
comm, Samsung, Mediatek and Hisilicon take more than 90% of the
market share in Android smart phones in 2017. From the table, we
can see that 83.3% of the listed SoCs have Cortex-A53 cores. (Note
that Kryo is also a customized version of Cortex-A53 by Qualcomm,
but, due to our lack of Kryo-based devices, we have not verified
if its DC ZVA instruction has the same behavior as Cortex-A53.)
Therefore, Cortex-A53 is a very commonly used microarchitecture
in the industry.

Table 3: Currently popular SoCs used in the industry (the
SoCs having Cortex-A53 are highlighted)

SoC Cores SoC Core
Qualcomm Snapdragon 410 Cortex-A53 Mediatek MT6735P Cortex-A53
Qualcomm Snapdragon 415 Cortex-A53 Mediatek MT6737 Cortex-A53
Qualcomm Snapdragon 425 Cortex-A53 Mediatek MT6737T Cortex-A53
Qualcomm Snapdragon 430 Cortex-A53 Mediatek MT6739 Cortex-A53
Qualcomm Snapdragon 435 Cortex-A53 Mediatek MT6750 Cortex-A53
Qualcomm Snapdragon 450 Cortex-A53 Mediatek MT6752 Cortex-A53
Qualcomm Snapdragon 610 Cortex-A53 Mediatek MT6753 Cortex-A53
Qualcomm Snapdragon 615 Cortex-A53 Mediatek MT8165 Cortex-A53
Qualcomm Snapdragon 616 Cortex-A53 Mediatek MT8173 Cortex-A72/-A53
Qualcomm Snapdragon 617 Cortex-A53 Mediatek MT8173C Cortex-A72/-A53
Qualcomm Snapdragon 625 Cortex-A53 Mediatek MT8176 Cortex-A72/-A53
Qualcomm Snapdragon 626 Cortex-A53 Mediatek MT8732 Cortex-A53
Qualcomm Snapdragon 630 Cortex-A53 Mediatek MT8735 Cortex-A53
Qualcomm Snapdragon 636 Kryo 260 Mediatek MT8752 Cortex-A53
Qualcomm Snapdragon 650 Cortex-A72/-A53 Samsung Exynos 5433 Cortex-A57/-A53
Qualcomm Snapdragon 652 Cortex-A72/-A53 Samsung Exynos 7420 Cortex-A57/-A53
Qualcomm Snapdragon 660 Kryo 260 Samsung Exynos 7570 Cortex-A53
Qualcomm Snapdragon 808 Cortex-A57/-A53 Samsung Exynos 7578 Cortex-A53
Qualcomm Snapdragon 810 Cortex-A57/-A53 Samsung Exynos 7580 Cortex-A53
Qualcomm Snapdragon 820 Kryo Samsung Exynos 7870 Cortex-A53
Qualcomm Snapdragon 821 Kryo Samsung Exynos 7880 Cortex-A53

Apple A11 Bionic Monsoon/Mistral Samsung Exynos 7885 Cortex-A73/-A53
Apple A10X Fusion Hurricane/Zephyr Samsung Exynos 8890 Mongoose/Cortex-A53
Apple A10 Fusion Hurricane/Zephyr Samsung Exynos 8895 Mongoose/Cortex-A53

Apple A9X Twister HiSilicon Kirin 620 Cortex-A53
Apple A9 Twister HiSilicon Kirin 650 Cortex-A53
Apple A8X Typhoon HiSilicon Kirin 655 Cortex-A53
Apple A8 Typhoon HiSilicon Kirin 658 Cortex-A53
Apple A7 Cyclone HiSilicon Kirin 659 Cortex-A53

Mediatek Helio P10 Cortex-A53 HiSilicon Kirin 930 Cortex-A53
Mediatek Helio P20 Cortex-A53 HiSilicon Kirin 935 Cortex-A53
Mediatek Helio P23 Cortex-A53 HiSilicon Kirin 950 Cortex-A72/-A53
Mediatek Helio P25 Cortex-A53 HiSilicon Kirin 955 Cortex-A72/-A53
Mediatek Helio P60 Cortex-A73/-A53 HiSilicon Kirin 960 Cortex-A73/-A53
Mediatek Helio X10 Cortex-A53 HiSilicon Kirin 960s Cortex-A73/-A53
Mediatek Helio X20 Cortex-A72/-A53 HiSilicon Kirin 970 Cortex-A73/-A53
Mediatek MT6732 Cortex-A53 Nvidia Tegra X1 Cortex-A57/-A53
Mediatek MT6735 Cortex-A53 Nvidia Tegra K1 (Denver) Denver
Mediatek MT6735M Cortex-A53 Marvell Armada PXA1908 Cortex-A53

Session 2: Hardware Attacks ASHES’18, October 19, 2018, Toronto, ON, Canada

33

https://eprint.iacr.org/2016/1196
http://www.thirdio.com/rowhammer.pdf
http://arxiv.org/abs/1805.04956
http://arxiv.org/abs/1805.04956
https://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh
https://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh

	Abstract
	1 Introduction
	2 Background
	2.1 ARMv7-A v.s. ARMv8-A
	2.2 DRAM Organization
	2.3 Rowhammer Bug and Attacks
	2.4 Existing Rowhammer Approaches on ARM

	3 Problem Statement
	4 New Exploration
	4.1 Flushing/Cleaning the Cache
	4.2 Bypassing the Cache
	4.3 Discussion on Evicting the Cache

	5 Evaluation
	5.1 Effectiveness of Approaches
	5.2 Disabling Special Instructions and Parallelization
	5.3 Monitoring Cache Misses

	6 Mitigation Approaches
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

