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ABSTRACT
In the past decade, numerous consensus protocols for networked
multi-agent systems have been proposed. Although some forms of
robustness of these algorithms have been studied, reaching consen-
sus securely in networked multi-agent systems, in spite of intru-
sions caused by malicious agents, or adversaries, has been largely
underexplored. In this work, we consider a general model for ad-
versaries in Euclidean space and introduce a consensus problem for
networked multi-agent systems similar to the Byzantine consensus
problem in distributed computing. We present the Adversarially
Robust Consensus Protocol (ARC-P), which combines ideas from
consensus algorithms that are resilient to Byzantine faults and from
linear consensus protocols used for control and coordination of dy-
namic agents. We show that ARC-P solves the consensus problem
in complete networks whenever there are more cooperative agents
than adversaries. Finally, we illustrate the resilience of ARC-P to
adversaries through simulations and compare ARC-P with a linear
consensus protocol for networked multi-agent systems.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.1.1 [Models and Principles]: Systems and Information
Theory—General Systems Theory

General Terms
Algorithms, Security, Theory

Keywords
Consensus, Dynamic agent, Networked multi-agent system, Ro-
bustness, Adversary

1. INTRODUCTION
Reaching consensus is a fundamental problem in group coordi-

nation. The formal study of consensus has a rich history in man-
agement science [5] and distributed computing [18]. More recently,
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there has been a surge of research in the coordination of multi-agent
networks. Within mobile robotics, there are several approaches re-
searching the minimum attributes required to achieve distributed
tasks such as gathering [1, 4, 29, 32]. In control, consensus algo-
rithms have been used for the coordination of dynamic agents for
group formation [10, 33], conflict resolution [24], and a host of
other problems [19, 21]. In sensor networks, consensus has been
considered for filtering [30], sensor fusion [36], and distributed hy-
pothesis testing [22].

Various forms of uncertainty have been considered in consensus
protocols for multi-agent networks. Reaching average consensus
in a wireless network with interference is studied in [34]. Additive
channel noise is addressed in [14]. Packet loss in ring networks is
studied in [13]. Nonuniform time delays for a class of linear sys-
tems is considered in [17]. Contraction analysis is used in [35] to
study nonlinear systems and wave variables are used in the com-
munication for robustness to nonuniform constant delays. A vir-
tual layer is used for self-stabilization of a network of robots to a
desired curve in [11] whenever there are intermittent disturbances
in the network. Robustness in terms of sensitivity to model uncer-
tainty has been addressed in [15].

On the other hand, robustness of consensus protocols in net-
worked multi-agent systems to malicious attacks and failures sim-
ilar to the Byzantine failures of [16] has only been studied in the
last few years. In [25–27], detecting and isolating malicious agents
in discrete-time linear consensus networks is considered. Simi-
larly, [31] addresses calculating functions of the initial states of
cooperative agents in discrete-time linear consensus networks in
the presence of malicious agents. Similar to these works, this paper
considers a problem that addresses security of consensus networks;
however, the problem introduced here is formulated in continuous-
time. Moreover, the algorithm described here is less computation-
ally complex when implemented in discrete-time.

Specifically, in this paper we consider robustness of networked
multi-agent systems to adversaries. The multi-agent system is com-
prised of two classes: cooperative and adversarial agents. The co-
operative agents have first-order integrator dynamics and the only
assumption about the behavior of the adversarial agents is that their
state trajectories are bounded and continuous. Additionally, we as-
sume there is an upper bound on the number of adversarial agents
present. The agents exchange scalar state information in an all-
to-all manner either through communication or sensing. The goal
is for the states of the cooperative agents to asymptotically align
to a constant value within the range of their initial states, without
knowledge of which agents are adversaries.

The main contribution of this work is the design and analysis of
a consensus protocol that is robust to the presence of adversaries.
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First, we introduce a system model in the context of ordinary dif-
ferential equations (ODEs). Then, we define the adversarial agree-
ment problem and present the consensus protocol, which we refer
to as the Adversarially Robust Consensus Protocol (ARC-P). ARC-
P is inspired by the ConvergeApproxAgreement algorithm [6, 18]
and the linear consensus protocol (LCP) [23]. We prove that ARC-
P yields a unique solution which solves the adversarial agreement
problem with an exponential rate of convergence. Then, we show
an upper bound on performance that allows for approximate solu-
tions to the problem in finite time. Finally, we provide several sim-
ulation results comparing ARC-P to LCP in the presence of adver-
saries, and illustrate the performance tradeoff incurred by ARC-P
for robustness to adversaries.

ARC-P combines ideas from the ConvergeApproxAgreement al-
gorithm, which is resilient to Byzantine faults, and LCP. Specif-
ically, it employs the sort and reduce function – which eliminate
outlying values to ensure the output is within the range of cooper-
ative agents’ states – similarly to [6]. The concept of using a sum
of relative state values (i.e., the difference between a neighboring
agent’s state and the given agent’s state) as control input to a first-
order integrator agent – in order to drive the agents’ states together
– is taken from LCP. By combining these ideas from distributed
computing and control, we obtain a new consensus protocol that
is resilient to adversaries, and can be analyzed using system theo-
retic techniques. Specifically, we analyze the Lipshcitz continuity
of the protocol to ensure the uniqueness of solutions. We use error
dynamics to show exponential pairwise convergence of the coop-
erative agent states. We show that the states of the cooperative
agents always converge to a point within the range of their initial
conditions using an invariant set argument. Finally, we bound the
worst-case convergence time with respect to any arbitrarily small
error tolerance, so the protocol can terminate in finite time with an
approximate solution.

The paper is organized as follows: Section 2 describes the system
model and the adversarial agreement problem. In Section 3 the
protocol ARC-P is described. In Section 4, we prove that ARC-
P solves the adversarial agreement problem. Section 5 presents
simulations illustrating ARC-P in the presence of adversaries, and
compares the performance of our solution with LCP. Related work
is discussed in Section 6. Finally, Section 7 provides concluding
remarks and some ideas for future work.

2. SYSTEM MODEL AND PROBLEM

2.1 System Model
The topology of the networked multi-agent system is described

by a labelled strongly connected digraph, D = (V, E), where V =
{1, . . . , n} describes the n dynamic agents. Without loss of gen-
erality, V is partitioned into a set of p cooperative agents, Vc =
{1, . . . , p}, and a set of q adversarial agents, Va = {p+1, . . . , n},
with q = n − p. The number of adversarial agents in the net-
work is bounded by a constant F ∈ Z

+, so that q ≤ F . The
edge set E ⊆ V × V models the information flow between the
agents, which is realized either through communication or sens-
ing. For each ordered pair (i, j) ∈ E , state information flows from
agent i to agent j. For loops, (i, i) ∈ E represents local state feed-
back. In this paper, the network is assumed to be complete, i.e.,
E={(i, j)|i, j ∈ V}.

The networked multi-agent system is a composition of two inter-
acting subsytems, i.e., the set of cooperative and adversarial agents.
The agents interact in a synchronous manner by sharing state infor-
mation, as shown in Figure 1. In the figure, xc = [x1, . . . , xp]

T ∈
R

p represents the states of the cooperative agents. Similarly, xa =

Figure 1: System model.

[xp+1, . . . , xn]
T ∈ R

q represents the states of the adversaries. The
state feedback to the adversarial agents is shown as dashed lines to
indicate that this information may or may not be used to influence
the behavior of the adversaries. On the other hand, the cooperative
agents must use the state information from all the agents in a similar
manner since the cooperative agents are unaware of which agents
are adversaries. However, from a global perspective, the states of
the adversaries can be viewed as uncertain inputs to the coopera-
tive agents. This is the approach used to analyze the convergence
properties of the subsystem of cooperative agents.

2.1.1 Cooperative Agents
Each cooperative agent i ∈ Vc has dynamics given by ẋi =

ui, where ui = fi(xc, xa) is a control input, which is designed
in such a way so that the cooperative agents reach consensus in
spite of the influence of at most F adversaries. The state of the
adversarial agents, xa, is treated as an uncertain input; however,
because there is no prior knowledge concerning which agents are
adversarial, the control input must treat the state information from
neighboring agents in the same manner. With these clarifications,
the dynamics of the system of cooperative agents are given by

ẋc = fc(xc, xa), xc(0) = xc0 , xa(t) ∈ C, (1)

where fc(xc, xa)=[f1(xc, xa) . . . fp(xc, xa)]
T, xc0 ∈ R

p is the
vector of initial values of the cooperative agents, and C ⊂ R

q is
some fixed compact set.

2.1.2 Adversarial Agents
The adversarial agents are assumed to be designed for the pur-

pose of disrupting the objective of the cooperative agents. The main
limitation on the behavior of the adversaries is that the state trajec-
tory of each agent is restricted to bounded continuous functions
of time. Specifically, we assume that xa(t) has a continuous tra-
jectory that remains in some arbitrarily large, but fixed compact
set C ⊂ R

q for all t ≥ 0. Although these assumptions eliminate
most unstable systems, the fixed compact set C can be chosen large
enough to include any finite region. One interesting case is when
the adversaries are designed to drive the states of the cooperative
agents to some unsafe region.

2.2 Adversarial Agreement Problem
Consider a networked multi-agent system consisting of n agents,

where a subset of the agents are adversaries. Assume there exists an
upper bound F on the number of such agents. Then the adversarial
agreement problem is defined by two conditions: agreement and
validity.

The agreement condition states that the pairwise absolute differ-
ence between the states of the cooperative agents approaches zero
asymptotically, regardless of the adversaries’ trajectories. That is,
for all xc(0) ∈ R

p,

lim
t→∞

|xi(t)− xj(t)| = 0, ∀i, j ∈ Vc, xa(t) ∈ C. (2)
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Equivalently, the cooperative agents achieve the agreement con-
dition if the state of the cooperative agents, xc, converges to the
agreement space, A = {y ∈ R

p|yi = yj , ∀i, j ∈ Vc}.
The validity condition states that the limit of the state trajectory

of each cooperative agent exists and is contained in the interval
formed by the initial states of cooperative agents, regardless of the
adversaries’ trajectories. That is, if we define the interval

I0 = [min
i∈Vc

xi(0),max
j∈Vc

xj(0)],

then the validity condition is formulated as

lim
t→∞

xi(t) ∈ I0, ∀i ∈ Vc, xa(t) ∈ C. (3)

As in the case of the agreement condition, the validity condition can
be stated in terms of xc. Let H0 = Ip

0 ⊂ R
p denote the hypercube

formed by the Cartesian product of p copies of I0. Then the validity
condition stated in (3) is equivalent to limt→∞xc(t) ∈ H0 for all
xa(t) ∈ C. Note that if the system satisfies both the agreement and
validity conditions, then all of the states of the cooperative agents
will converge to a single limit point within I0.

Example: Consider the linear consensus protocol [23], which
we will denote by LCP throughout this paper:

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) , xi(0) = x0i , (4)

where Ni = {j ∈ V|(j, i) ∈ E , j �= i}. In complete networks,
adversaries of the type outlined above cannot prevent the coopera-
tive agents from asymptotically aligning their states to a consensus
state. This is because for complete networks, (4) can be written as

ẋi(t) = −nxi(t) +
n∑

j=1

xj(t).

Therefore, the pairwise error eij = xi − xj for i, j ∈ Vc has
dynamics given by

ėij(t) = −neij(t),

which converges exponentially to zero with rate n.
However, the validity condition is not satisfied by LCP. Even a

single adversary in a complete network can become the leader and
drive the state of each cooperative agent to an arbitrary point in
the interval C. Although LCP is designed for cooperative agents,
the sensitivity to adversarial influence on the cooperative agents is
undesirable in cases where security is an issue.

3. CONSENSUS PROTOCOL
This section introduces the Adversarially Robust Consensus Pro-

tocol (ARC-P), which is robust to adversaries in complete networks
whenever there are more cooperative agents than adversaries, or
n > 2F . The main idea of the protocol is for each agent to sort
the state values and then filter (remove) the F largest and F small-
est values so that the remaining values lie within the range of co-
operative states. The state of the given agent i is then subtracted
from each of the remaining values to form m = n − 2F relative
state values. A relative state value is negative if the state of agent
i is greater than the filtered state value and nonnegative otherwise.
The rate of change of the state of agent i is then the sum of these
m relative state values. The result is that the state of agent i in-
creases (decreases) whenever it is smaller (larger) than the average
of the m filtered values, and remains constant if it is equal. Intu-
itively, this process should force the cooperative agents to converge
to the average of the filtered values. In the extreme case, when-
ever n = 2F + 1, only the median of the state values remains,

Figure 2: Synchronous data flow model of ARC-P for agent i.

and therefore, the cooperative agents’ states are driven toward the
median of the state values. Before stating the protocol, we require
some definitions.

DEFINITION 1. Let m = n − 2F , and denote the elements of
a vector x ∈ R

n by xi, i = 1, 2, . . . , n. Then:

1. The concatenation function, χp,q : R
p × R

q → R
p+q, is de-

fined by1

χp,q(y, z) =

[
y
z

]
; (5)

2. The (ascending) sorting function on n elements, ρn : Rn →
R

n, is defined by ξ = ρn(x) such that ξ is a permutation of
x satisfying

ξ1 ≤ ξ2 ≤ · · · ≤ ξn; (6)

3. The reduce function with respect to F ∈ Z
+ is defined by

rF : Rn → R
n−2F , n > 2F , satisfying

rF (ξ) = [ξF+1 ξF+2 . . . ξn−F ]
T ; (7)

4. The sum function, s : Rm → R, is defined by

s(x) =

m∑
i=1

xi; (8)

5. The composition of the concatenation, sorting, reduce, and
sum functions is defined by φ : Rp × R

q → R, satisfying for
all (y, z) ∈ R

p × R
q ,

φ(y, z) = (s ◦ rF ◦ ρ ◦ χp,q)(y, z). (9)

The concatenation, sorting, and sum functions are defined in a
natural way. The reduce function is intended to be composed with
the sorting function – as in the definition of φ – so that the resulting
operation removes the F smallest and F largest elements.

With these definitions, ARC-P calculates ui=fi(xc, xa) for each
cooperative agent i ∈ Vc by

fi(xc(t), xa(t)) = −mxi(t) + φ(xc(t), xa(t)), (10)

where m = n− 2F . Thus, to ensure m ≥ 1, we require n > 2F .
Figure 2 shows the data flow model of ARC-P for cooperative

agent i. In the figure, the state, xi(t), of the agent, whose dynam-
ics are ẋi(t) = ui(t), is subtracted from each of the other states,
1The concatenation function χp,q is essentially the identity func-
tion on R

p+q. It is used for notational reasons so that xa can be
treated as an uncertain input to the system of cooperative agents.
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including itself. The resulting relative state values are sorted and
then reduced by eliminating the largest and smallest F elements.
Finally, the remaining elements are summed to produce the control
input ui(t) to the integrator agent. It is straightforward to show that
this order of operations is equivalent to (10). This implementation
is most beneficial in cases where the relative state is sensed directly,
so there is no need for a global coordinate system.

4. ANALYSIS
In this section, we analyze the continuity and convergence prop-

erties of ARC-P. First, we consider the Lipschitz continuity of the
protocol, in order to ensure existence and uniqueness of solutions
for all time t > 0, over all initial conditions xc(0) ∈ R

p, and
for all adversarial trajectories, xa(t) ∈ C. Next, we show the
agreement condition is satisfied and characterize the convergence
rate to the agreement space. Then, we prove that the validity con-
dition holds, thereby showing that ARC-P solves the adversarial
agreement problem. Finally, we consider a uniform upper bound
on convergence in order to obtain ε-approximate solutions to the
adversarial agreement problem in finite time.

4.1 Lipschitz Continuity
We begin by recalling the definition of Lipschitz continuity. For

the purposes of this paper, we restrict ourselves to Euclidean spaces.

DEFINITION 2. Let || · || denote any norm defined on a Eu-
clidean space, and let g : Rn → R

m. Then g is Lipschitz contin-
uous with Lipschitz constant L if the following condition holds for
all x, y ∈ R

n:

||g(x)− g(y)|| ≤ L||x − y||.

In order to show the Lipschitz continuity of ARC-P, we must
show that the sorting function is Lipschitz continuous. First, we
consider an interesting property of the sorting function; namely,
given any two vectors, then the angle between the vectors will never
increase by sorting the vectors. This result is then used to show
Lipschitz continuity of the sorting function.

LEMMA 1. Given x, x0 ∈ R
n with ξ = ρn(x) and ξ0 =

ρn(x0), then

ξTξ0 =

n∑
i=1

ξiξ0i ≥
n∑

i=1

xix0i = xTx0. (11)

PROOF. We prove the result by induction on n. The base step
(n = 1) is obvious (since ξ = x, ξ0 = x0). Now, suppose (11) is
true for 1 ≤ n ≤ m, and let n = m+1, with x, x0, ξ, ξ0 ∈ R

m+1.
Let j (and k) denote the index of the element with minimum value
in x (x0). If there are multiple elements with minimum values in
either vector, arbitrarily fix the index to correspond to one of the
minimum values. There are two cases: j �= k and j = k.

Case 1, j �= k: Swap the elements xj and xk in x so that the min-
imum values of x and x0 occur in the same index (k in this case).
Remove the kth element from each vector and denote the resulting
vectors by x′, x′

0 ∈ R
m, and their corresponding sorted versions

by ξ′ and ξ′0 respectively. Then, by the inductive hypothesis

m∑
i=1

ξ′iξ
′
0i ≥

m∑
i=1

x′
ix

′
0i . (12)

But the terms in (12) are related to the terms in xTx0 and ξTξ0 as
follows. For the right-hand side, the only elements altered in x are
xj and xk, which have been swapped (with xj removed), and only

x0k has been removed from x0, with no other changes to x0. Thus,
we have

m∑
i=1

x′
ix

′
0i =

m+1∑
i=1

i�=j,k

xix0i + xkx0j . (13)

Similarly, for the left-hand side of (12), only one minimum value
of each vector has been removed; therefore, the inner product of
the resulting sorted vectors (ξ′Tξ′0) contain the same terms as ξTξ0,
except for the term xjx0k = ξ1ξ01 . Hence,

m∑
i=1

ξ′iξ
′
0i =

m+1∑
i=2

ξiξ0i . (14)

Substituting (13) and (14) into (12) and adding xjx0k = ξ1ξ01 to
both sides of the inequality yields

m+1∑
i=1

ξiξ0i ≥
m+1∑
i=1

i�=j,k

xix0i + xkx0j + xjx0k . (15)

Now, since xk ≥ xj and x0j ≥ x0k , we have

(xk − xj)(x0j − x0k) ≥ 0

=⇒ xkx0j + xjx0k ≥ xkx0k + xjx0j .

Finally, combining this with (15) produces the desired result

m+1∑
i=1

ξiξ0i ≥
m+1∑
i=1

xix0i , (17)

which completes the inductive step.
Case 2, j = k: Fix x′ and x′

0 by removing the kth element (the
minimum value) of x and x0, respectively. Then, (12) is true by the
inductive hypothesis. Analogous to Case 1, (14) also holds. In this
case, the right-hand side of (12) is given by

m∑
i=1

x′
ix

′
0i

=
m+1∑
i=1

i�=k

xix0i . (18)

Substituting (14) and (18) into (12) and adding xkx0k = ξ1ξ01
to both sides of the inequality yields (17), which completes the
inductive step and the proof.

LEMMA 2. The sorting function, ξ = ρn(x) ∈ R
n, defined by

(6), is a Lipschitz continuous function of x ∈ R
n.

PROOF. Fix x, x0 ∈ R
n and let ρn(x) = ξ, ρn(x0) = ξ0.

Then, using the norm preservation property of permutations and
Lemma 1, we have

||ξ − ξ0||2 =
(
ξTξ + ξT0 ξ0 − 2ξTξ0

) 1
2

≤
(
xTx+ xT

0x0 − 2xTx0

) 1
2
= ||x− x0||2.

THEOREM 1. The function fc(xc, xa) defining the dynamics of
the subsystem of cooperative agents (c.f. (1)), with fi defined in
(10), is Lipschitz continuous in xc and xa.

PROOF. The concatenation, reduce, and sum functions are lin-
ear maps and are therefore Lipschitz continuous. The sorting func-
tion is Lipschitz continuous by Lemma 2. The result then follows
since scalar multiplication is Lipschitz continuous and the compo-
sition and difference of Lipschitz functions result in a Lipschitz
continuous function.
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Since xa(t) ∈ C is a bounded continuous trajectory and fc is
Lipschitz continuous, the system (1) admits a solution xc(t) which
is uniquely defined on R

+ for all xc(0) ∈ R
p and xa(t) ∈ C [2].

COROLLARY 1. The networked multi-agent system with n >
2F and each cooperative agent’s control protocol given by (10),
has a unique solution for all t ≥ 0, xc(0) ∈ R

p, and xa(t) ∈ C.

4.2 Agreement
In this section, we prove the agreement condition for ARC-P and

characterize the convergence rate to the agreement space.

THEOREM 2. The networked multi-agent system with n > 2F
and each cooperative agent’s control protocol given by (10), satis-
fies the agreement condition (2). Moreover, the convergence to the
agreement space is exponential with rate m = n− 2F .

PROOF. For each pair i, j ∈ Vc, i �= j, we define the pairwise
error eij(t) = xi(t) − xj(t). Since n > 2F , φ(xc(t), xa(t))
is defined. Because the network is complete, φ(xc(t), xa(t)) is
identical for each agent. Therefore, the φ-terms cancel in the error
dynamics of ėij(t) = −meij(t). Now, define e(t) as the column
vector containing all (p2) pairwise errors of the form eij(t). Clearly,
e = 0 is equivalent to xc ∈ A. The error dynamics are then

ė = −me =⇒ e(t) = e(0)e−mt,

which proves the agreement condition is satisfied and that the con-
vergence is exponential with rate m = n− 2F .

4.3 Validity
While the agreement condition follows directly from the sym-

metry provided by the complete network, the validity condition re-
quires an invariant set argument, facilitated by some results from
the theory of uncertain systems. As described in Section 2.1, we
consider a decomposition of the multi-agent system into cooper-
ative and adversarial agents which interact through sharing state
information. The state information from the adversarial agents is
viewed as an uncertain input to the subsystem of cooperative agents
and may take values in the compact set C. We begin with the defi-
nition of robustly positively invariant sets.

DEFINITION 3. The set S ⊂ R
p is robustly positively invariant

for the system given by (1) if for all xc(0) ∈ S and all xa(t) ∈ C
the solution is such that xc(t) ∈ S for t > 0.

In order to show that the validity condition holds, we first show
that the hypercube H0, containing all of the initial values of the
cooperative agents, is a robustly positively invariant set using an
extension of Nagumo’s Theorem for uncertain systems. Then we
prove that the limit of the cooperative agents’ states exists and
therefore lies in this hypercube. For notational brevity, we denote

xmin = min
i∈Vc

xi(0) and xmax = max
i∈Vc

xi(0).

LEMMA 3. If each cooperative agent’s control protocol is given
by (10), then the hypercube H0 = Ip

0 defined by

H0 = {y ∈ R
p|xmin ≤ yi ≤ xmax},

is robustly positively invariant for the system (1).

PROOF. First we require a definition. For any compact and con-
vex set S ⊂ R

p, the tangent cone to S in y is the set

TS(y) = {z ∈ R
p| lim

h→0

dist(y + hz,S)
h

= 0},

where dist(y,S) = infx∈S ||y − x||2. Since H0 is closed and
convex, an extension to Nagumo’s Theorem presented in [3, p.106]
states that H0 is robustly positively invariant if and only if

fc(y, xa) ∈ TH0(y), ∀y ∈ H0 and xa ∈ C.

For interior points y in H0, we have TH0(y) = R
p, so we only

need to check the boundary of H0. The boundary, ∂H0, is given
by

∂H0 = {y ∈ H0|∃i ∈ {1, 2, . . . , p} s.t. yi ∈ {xmin, xmax}}.

In other words, points on the boundary have at least one component
that is either a minimum or maximum of the initial values.

Fix y ∈ ∂H0 and let Imin, Imax ⊆ {1, 2, . . . , p} denote the sets
of indices such that

j ∈ Imin ⇔ yj = xmin and k ∈ Imax ⇔ yk = xmax.

Since y ∈ ∂H0, at least one of these index sets is nonempty. Let
ej denote the j-th canonical basis vector. From the geometry of the
hypercube, it is sufficient for the following to hold:

eTj fc(y, xa) ≥ 0 ∀j ∈ Imin, xa(t) ∈ C,
eTkfc(y, xa) ≤ 0 ∀k ∈ Imax, xa(t) ∈ C.

It can be shown that each component j ∈ {1, 2, . . . , m} of ζ �
(rF ◦ ρn ◦ χp,q)(y, xa) satisfies

xmin ≤ ζj ≤ xmax, ∀xa(t) ∈ C.

Indeed, otherwise y /∈ H0. Therefore, we have that for all xa(t) ∈
C, j ∈ Imin, and k ∈ Imax,

eTj fc(y, xa) = −myj +
m∑
i=1

ζi = −mxmin +

m∑
i=1

ζi ≥ 0,

eTkfc(y, xa) = −myk +
m∑
i=1

ζi = −mxmax +
m∑
i=1

ζi ≤ 0.

THEOREM 3. The networked multi-agent system with n > 2F
and each cooperative agent’s control protocol given by (10), satis-
fies the validity condition (3).

PROOF. Consider ψ(t) = maxi∈Vc(xi(t)). Define for each
j ∈ Vc,

Ij = {t ≥ 0 | xj(t) = ψ(t)}.
Then, let S = {j ∈ Vc|Ij �= ∅}. We claim that elements of S
satisfy the following property: for i, j ∈ S , xi(t) ≡ xj(t), for all
t ≥ 0. To show this, fix i, j ∈ S , and consider the errors eij(t)
from the proof of Theorem 2. If xi(0) > xj(0), then

eij(t) = eij(0)e
−mt > 0, ∀t ≥ 0.

This contradicts the fact that j ∈ S . By symmetry, we cannot have
xj(0) > xi(0). Therefore, xi(0) = xj(0), and eij(t) ≡ 0, which
implies xi(t) ≡ xj(t), for all t ≥ 0.

Therefore, ψ(t) uniquely describes the positive trajectory of the
subset of cooperative agents with initial value xmax. Now, since
φ(xc(t), xa(t)) ≤ mψ(t), ψ(t) is nonincreasing. Furthermore,
since ψ(t) must remain in I0 by Lemma 3, it is bounded below by
xmin; thus limt→∞ ψ(t) ∈ I0 exists. Finally, by Theorem 2, all of
the states of the cooperative agents converge to ψ(t) and therefore,
we have limt→∞ ψ(t)=limt→∞ xi(t), for all i ∈ Vc. Since this is
independent of xa(t), the validity condition is satisfied.

By Theorem 2, ARC-P satisfies the agreement condition. By The-
orem 3, ARC-P satisfies the validity condition. Therefore, ARC-P
solves the adversarial agreement problem.
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THEOREM 4. The networked multi-agent system with n > 2F
and each cooperative agent’s control protocol given by (10), solves
the adversarial agreement problem.

4.4 Finite Termination
In this section, we derive an upper bound on the performance

of ARC-P in order to terminate in finite time while ensuring an
ε-approximate solution to the adversarial agreement problem. By
Theorem 2, the rate of convergence is exponential with ratem. But,
the upper bound on convergence can be made precise.

COROLLARY 2. Consider a networked multi-agent system with
n > 2F and each cooperative agent’s control protocol given by
(10). Define β = maxi∈V xi(0)−mini∈V xi(0). Then,

max
i,j∈Vc

eij(t) ≤ βe−mt,∀t ≥ 0.

PROOF. For all i, j ∈ Vc,

eij(t) = eij(0)e
−mt ≤ βe−mt,∀t ≥ 0.

Using Corollary 2, an ε-approximate solution to the adversarial
agreement problem can be obtained in finite time. Specifically, to
ensure that the maximum pairwise error between the states of co-
operative agents is less than ε > 0, Corollary 2 implies we may
terminate at any time greater than 1

m
| log( ε

β
)| (provided β �= 0, in

which case xc(0) ∈ A).

5. SIMULATIONS
To illustrate the robustness of ARC-P, we consider three exam-

ples in which a subset of the agents have been overtaken and re-
designed with malicious intent, and a fourth example that illustrates
the performance tradeoff incurred for the robustness to adversaries.
The first scenario considers the case where two out of the eight
agents are adversaries and their goal is to drive the consensus state
of the cooperative agents to an unsafe set U . In the second scenario,
three of the agents have been redesigned as oscillators in order to
force the cooperative agents to oscillate at the desired frequency.
Finally, in the third scenario a single adversary in a large network
tries to force the other agents to follow a sinusoidal trajectory in the
unsafe set.

To motivate the need for a consensus protocol that is robust to
adversaries, we compare ARC-P with LCP under the same condi-
tions. It is shown that LCP achieves the agreement condition in
spite of the behavior of the adversaries, but not the validity con-
dition. For LCP, the states of the cooperative agents effectively
converge to the average of the aversaries’ trajectories. Thus, in all
three scenarios, the adversaries are able to achieve their goal.

Example 1: Consider a multi-agent network with eight agents,
each with unique identifier in {1, 2, . . . , 8}, and with initial states
equal to their identifier (e.g., for agent 1, x1(0) = 1). Suppose that
agents 7 and 8 have been compromised (i.e., Va= {7, 8}). The
adversaries are redesigned with

ẋi = −10xi + 10ui, ∀i ∈ Va,

where the reference inputs ui for the adversarial agents are u7 =
25 and u8 = 26. Therefore, the adversarial agents will converge
exponentially to 25 and 26, respectively, with rate 10.

The goal of the adversaries is to drive the states of the coopera-
tive agents into the unsafe set U={y ∈ R|y ≥ 20}. The results for
LCP and ARC-P are shown in Figure 3. The adversaries are able to
achieve their goal only with LCP. The cooperative agents equipped
with ARC-P achieve both the agreement and validity conditions.
Because both of the adversaries always have larger state values, the

consensus process for the cooperative agents is unaffected and the
final consensus state is the average of the m = 4 initial states of
the agents filtered by φ(xc, xa); in this case, 4.5. Also, the rate of
convergence is m = 4.
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(a) LCP.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

t (s)

st
at

e

(b) ARC-P.

Figure 3: Adversaries try to drive agents to U .

Example 2: Consider the same multi-agent network as Exam-
ple 1, with the same initial conditions, but with agents 6, 7, and
8 as adversaries (i.e., Va= {6, 7, 8}). This time the adversaries’
dynamics are designed as

ẍi = −100π2xi, ∀i ∈ Va.

Thus, they are oscillators with natural frequency 5 Hz and ampli-
tude given by their initial state. The goal of the adversaries in this
case is to force the cooperative agents’ states to oscillate at 5 Hz.

The results for LCP and ARC-P are shown in Figure 4. As can
be seen in Figure 4(a), the cooperative agents executing LCP syn-
chronize and begin oscillating at 5 Hz, with a phase lag of 90◦ with
respect to the adversaries. However, for the case of ARC-P, the
cooperative agents achieve the agreement and validity conditions.
As the adversarial agents move their states inside the range of the
filter φ, the limit point for the cooperative agents is shifted, which
can be seen in Figure 4(b) as a change in the shape of the expo-
nential decay each time the adversaries move through this range.
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(b) ARC-P.

Figure 4: Adversaries try to force agents to oscillate at 5 Hz.

This shifts the limit point from 3 to 2.6, without affecting the rate
of consensus.

Example 3: Consider a multi-agent network with 51 agents,
where only agent 51 is an adversary. The initial states of the coop-
erative agents are x1(0) = −1, x2(0) = −2, . . . , x50(0) = −50.
The adversary is designed with time-varying dynamics given by the
following expressions:

ẍ51 = −0.25π2x51 if 0 ≤ t < 1;

ẋ51 = −0.4π sin(0.2π(t− 1)) if t ≥ 1;

and initial conditions x51(0) = 0, ẋ51(0) = 15π. The resulting
trajectory is

x51(t) =

{
30 sin(0.5πt) t < 1;

2 cos(0.2π(t− 1)) + 28 t ≥ 1.

The objective of the adversary is to bring the states of the coop-
erative agents into the unsafe set U (as in Example 1), and force
them to oscillate at a frequency of 0.1 Hz. The results for LCP
and ARC-P are shown in Figure 5. In this case, the convergence
rates for LCP and ARC-P are 51 and 49, respectively, so the pair-
wise difference between the states of cooperative agents becomes
negligible by 0.1 s (approximately five time constants) into the sim-
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(b) ARC-P.

Figure 5: A single adversary tries to drive 50 cooperative
agents to oscillate at 0.1 Hz in the unsafe set U .

ulation. The result is that the trajectory of the cooperative agents
appears to be a single curve in the figure. Clearly, the adversary
is able to achieve its objective only with LCP. The consensus limit
point for ARC-P is −25, i.e., the average of x1(0),. . . ,x49(0).

Example 4: We consider the performance tradeoff required
for robustness to adversaries. For this purpose, consider the same
multi-agent network of Example 1, but with no adversaries. As
shown in Theorem 2, the rate of exponential convergence is m =
n−2F . The change in the rate of convergence with F is illustrated
in Figure 6 for the eight agent network. Note that ARC-P reduces
to LCP in the case F = 0. It is also important to note that although
the limit point observed in Figure 6 is the same in all four cases, this
would not be the case with asymmetries in the initial conditions.

By scaling ARC-P in (10) by the factor n
m

, we may eliminate
the tradeoff in performance for robustness to adversaries, and make
ARC-P perform as well as LCP. However, LCP may also be scaled
to improve its rate of convergence. Moreover, scaling ARC-P will
incur a reduction in robustness to time delays as it does with LCP.
Indeed, scaling LCP scales the largest eigenvalue of the Laplacian,
which reduces the robustness to time delays [20]. Investigation of
the robustness of ARC-P to time delays is left for future work.
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(a) F = 0, m = 8, equivalent to LCP.
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(d) F = 3, m = 2.

Figure 6: Performance tradeoff for robustness with ARC-P.

6. RELATED WORK AND DISCUSSION
Some of the earliest work on reaching consensus in the presence

of adversaries can be found in [28] and [16], where the Byzantine
agreement problem was first introduced. The notion of adversary
described in this paper is similar to Byzantine failures, and has the
same intent, i.e., to consider robustness to some sense of worst-
case behavior. However, the restriction on continuity of the tra-
jectory and the requirement to share true state information make
our model more limited than the Byzantine fault model. Byzan-
tine faulty processors are allowed to change their state to any valid
state, and are allowed to send different messages to different pro-
cessors. But within the environment of Euclidean space and with
evolution in continuous-time, the restriction of continuity is sensi-
ble and even required in many physical situations. Furthermore, if
the state information is obtained through sensing or broadcast com-
munication, it is reasonable to assume the same state information
is received by all agents (under the assumption of perfect sensors).

The Byzantine agreement problem has been generalized to allow
approximate solutions for both synchronous and asynchronous sys-
tems whenever the values are arbitrary real numbers [6]. The filter
φ of this work is modeled after the class of approximation functions
considered in [6]. In contrast to [6], we construct φ on the topology
of Euclidean space as opposed to using multisets. Moreover, the
select function is not needed because the adversaries cannot hide
their true state. This is why we are able to loosen the constraint on
the ratio of adversaries to n ≥ 2F + 1 (from n ≥ 3F + 1). An in-
teresting consequence of the results presented here is that the class
of approximation functions considered in [6] are Lipschitz contin-
uous (the proof of the Lipschitz continuity of the select function
follows because the select function is linear).

More recently, there has been work in mobile robotics, which
views coordination problems from a distributed computing per-
spective. The goal of the research is to characterize the weakest set
of assumptions required for achieving a certain coordinated task
in finite time [29]. One of the tasks considered is for a group of
robots to gather at a single point in space (i.e., rendezvous) in finite
time [32]. In order to consider the weakest assumptions on the ca-
pabilities of the robots, it is common to assume that the robots are
indistinguishable, have different local coordinate frames, and are
oblivious (which means they do not remember past observations
or computations performed in previous steps). In some cases, it is
assumed that all robots are able to obtain the exact position of all
other robots, which is similar to the case considered in this paper.

The robot gathering problem has also been studied in the pres-
ence of faults [1], including Byzantine faults [4]. From a distributed
computing perspective, the issue of stability of the robot dynamics
is ignored, and the evolution of the robots occur in computational
cycles (e.g., the Wait-Look-Compute-Move cycle) [29]. The com-
mon computational models used are the ATOM model [32], where
the full cycle is executed instantaneously and atomically, and the
CORDA model [29], where each stage requires a (nonzero) finite
amount of time to execute any given stage, and any non-null move
action will result in a (nonzero) finite distance moved.

The gathering problem with Byzantine failures shares some sim-
ilarities with the adversarial agreement problem. As mentioned
above, in some cases all-to-all sharing of state information is as-
sumed [4]. Also, the cooperative agents are oblivious, which is
also the case in our work because the control input is static. Ad-
ditionally, in ARC-P the cooperative agents are indistinguishable,
although this is not explicitly required in our model.There are also
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some key differences between the gathering and adversarial agree-
ment problems. In our model, it is implicitly assumed there is a
global inertial coordinate frame, unless the relative states are the
quantities sensed. Also, in the gathering problem, consensus to a
point must be achieved in finite time, as opposed to the asymp-
totic requirement of the adversarial agreement problem. However,
because the dynamics of the robots are not considered, stability is
assumed, whereas in the adversarial agreement problem, the dy-
namics of the individual agent and of the subsystem of cooperative
agents is fundamental. A consequence of modeling the dynamics
as ODEs is that the system model is synchronous. This differs from
the gathering problem with Byzantine faults, where the system is
often assumed to be asynchronous [4].

Another closely related research problem is the issue of security
of consensus in multi-robot systems [9]. A distributed intrusion
detection system (IDS) has been developed using a hybrid model
of robotic agents that monitors neighboring agents to detect non-
cooperative agents using only local information [9]. The distributed
IDS has been extended to deal with the case where some of the
monitors provide false information [8], and improved by using past
information [7]. The distributed IDS approach differs from ARC-
P because the agents executing ARC-P are oblivious, so they do
not require past information for robustness to adversaries. More-
over, the approximation functions can be computed in linear time,
so they are very efficient. However, the adversarial agreement prob-
lem is not concerned with issues such as collision avoidance, which
makes the agents executing ARC-P susceptible in this case. On the
other hand, avoiding collisions with misbehaving agents has been
considered for the distributed IDS [8].

Also, the issue of security of linear consensus networks has been
studied. In [25], the issue of a single malicious agent is consid-
ered. The same authors later extended the work to characterize the
connectivity of the network required to tolerate misbehaving agents
and non-colluding agents in [26]. A computationally expensive but
exact algorithm was presented in [26] to detect and isolate up to k
misbehaving agents in networks with connectivity at least 2k + 1.
Additionally the structure of the entire network was necessary for
the exact algorithm [26]. In [27], two approaches were considered
to reduce the computational complexity and require only partial
network information. The first assumes the network is comprised
of weakly interconnected subcomponents and restricts the behav-
ior of the misbehaving agents. The second imposes a hierarchical
structure to detect and isolate the misbehaving agents. The problem
considered in these papers requires detecting and isolating the mis-
behaving agents, and therefore results in more complex algorithms
than ARC-P.

Another approach is considered in [31], where the feasibility of
reaching consensus on any function of the initial states is consid-
ered in the presence of malicious agents. In this case, the linearity
of the protocol is exploited to calculate the initial values exactly
in at most n steps, where n is the number of nodes. Similar to
our model for adversary, the malicious agents send the same infor-
mation to all their neighbors. However, the malicious agents are
modeled in discrete-time, so there is no continuity restriction.

Finally, [12] presents a framework for determining the robust-
ness of distributed algorithms for discrete-time, synchronous algo-
rithms on undirected graphs. The robustness of an algorithm is
defined with respect to a fault model and is measured using a cost
function. The cost function is a formal model of the cooperative
task, and is defined on a domain consisting of all state and input
trajectories, initial states, and environmental variables of the net-
worked multi-agent system. The minimizer of the cost function
should occur on a subset of the domain where the networked multi-

agent system achieves the task. By extending the framework of [12]
to continuous-time and by defining the cost function

C = lim
t→∞

(
n∑

i,j=1

(xi(t)− xj(t))
2 +

n∑
i=1

dist(xi(t),H0)
2

)
,

for the adversarial agreement problem, it is straightforward to show
using the results of this paper that ARC-P is worst-case robust to
adversaries up to F = �n−1

2
� agents in complete networks. This

shows that our interpretation of robustness is conformable to that
of [12].

7. CONCLUSIONS AND FUTURE WORK
In this paper, we provide a general model for adversaries in Eu-

clidean space and propose the adversarial agreement problem, a
consensus problem in the context of adversaries. Then, we intro-
duce the Adversarially Resilient Consensus Protocol (ARC-P) that
combines ideas from distributed computing and control consensus
protocols. We analyze the convergence properties of ARC-P, and
show that it solves the adversarial agreement problem. Addition-
ally, we show how to obtain approximate solutions to the problem
in finite time. Then we provide several simulations to illustrate
the resilient behavior of ARC-P to adversaries and the performance
tradeoff required for the robustness to adversaries. Finally, we de-
scribe the related work and show how ARC-P is worst-case ro-
bust [12] to adversaries in complete networks whenever the ratio
of adversaries to total agents is less than one-half.

Currently, we assume an “ideal” network, where all agents are
able to obtain instantaneous, real-valued state information from ev-
ery other agent. This assumption isolates the network uncertainties
from the issue of adversaries. In future work, we would like to
relax these idealized assumptions by simultaneously considering
adversaries with other network uncertainties, such as time delays,
packet loss, channel noise, and quantization. Also, for the protocol
to be more useful, we intend to generalize the protocol for arbi-
trary network topologies by using a local bound on the number of
adversaries amongst each agent’s neighbors.
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