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ABSTRACT
Distributed consensus protocols are an important class of
distributed algorithms. Recently, an Adversarial Resilient
Consensus Protocol (ARC-P) has been proposed which is
capable to achieve consensus despite false information pro-
vided by a limited number of malicious nodes. In order to
withstand false information, this algorithm requires a mesh-
like topology, so that multiple alternative information flow
paths exist. However, these assumptions are not always
valid. For instance, in Smart Grid, an emerging distributed
CPS, the node connectivity is expected to resemble the scale
free network topology. Especially closer to the end customer,
in home and building area networks, the connectivity graph
resembles a tree structure.

In this paper, we propose a Range-based Adversary Re-
silient Consensus Protocol (R.ARC-P). Three aspects dis-
tinguish R.ARC-P from its predecessor: This protocol op-
erates on the tree topology, it distinguishes between trust-
worthiness of nodes in the immediate neighborhood, and it
uses a valid value range in order to reduce the number of
nodes considered as outliers. R.ARC-P is capable of reach-
ing global consensus among all genuine nodes in the tree if
assumptions about maximal number of malicious nodes in
the neighborhood hold. In the case that this assumption is
wrong, it is still possible to reach Strong Partial Consensus,
i.e., consensus between leafs of at least two different parents.
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1. INTRODUCTION
Several emerging classes of applications, such as Smart

Grid, Vehicular Networks, or Distributed Person Tracking
with multiple surveillance cameras, require coordinated be-
havior of all involved CPS systems. Smart Grid should
be able to coordinate behavior of Smart Appliances to dis-
tribute load requirements over time and thus avoid energy
spikes. Vehicular Networks should be able to distribute haz-
ard information, thus preventing collisions and congestions
on the roads. Multiple cameras can be used for coordinated
distributed surveillance allowing tracking of persons in the
field with the necessary grade of detail.

These are but a few of many emerging distributed CPS
applications. What is common between all these applica-
tions is the need to coordinate actions of all involved CPS
in a timely manner. Furthermore, often even coordination
and/or optimization of local (i.e., in the neighborhood) pa-
rameters is sufficient to ensure global properties. Due to
the vast amount of nodes in such scenarios as well as to the
required robustness against node failures, distributed solu-
tions should be applied.

Apart from coordinated tasks, the fundamental difference
between those scenarios is that the coordination should be
performed in various topologies, both network and overlay,
which also have various grades of dynamicity. Smart Grids
are expected to resemble scale-free networks with mesh-like
core and tree-like topologies closer to the end customers,
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e.g., in the Home and Building Area Networks. With excep-
tion of the Smart Appliances, which can join and leave the
network comparatively often, Smart Grid network topology
evolves very slowly in time; therefore, it can be considered as
static. In Vehicular Networks, a highly dynamic mesh topol-
ogy should be taken into account. The Distributed Person
Tracking, as it has been considered in [16], operates on a
static mesh. Therefore, all of these scenarios might require
different solutions optimized for the particular topology and
the topological dynamics.

In this paper, we focus on the consensus problem in Build-
ing Area Networks (BAN) in Smart Grid, whose network
and overlay topologies are trees. As Smart Appliances, which
are leaf nodes in these trees, are owned by the end customers
as well as exposed to the unrestricted physical access, it is
reasonable to assume that they can be rigged. Therefore, a
consensus protocol resilient to the false information provided
by leaf nodes is needed.

We propose a Range-based Adversary Resilient Consen-
sus Protocol (R.ARC-P). Compared to the ARC-P protocol
introduced in [7, 9], it has three main differences. First,
whereas ARC-P requires mesh topology in order to reach
consensus, R.ARC-P operates on the tree topology. Second,
ARC-P is an indiscriminate protocol, treating all nodes in
the neighborhood equally; R.ARC-P is a discriminating pro-
tocol introducing different trust relationships based on the
child-parent relation in the tree topology. Third, in ARC-
P, the only value always trusted is the node’s own value; in
R.ARC-P, the range of values between its own value and the
value of the parent node is considered as trustworthy.

The remainder of the paper is structured as follows. After
discussing related work in Section 2, we describe the prob-
lem formulation in Section 3. In Section 4 we present the
R.ARC-P protocol. The simulation results are presented in
Section 5. We discuss the reasons behind consensus with
R.ARC-P as well as outline concepts of the R.ARC-P based
detection and localization of malicious nodes in Section 6.2.
We conclude this paper with a short review and discussion
of planned future work.

2. RELATED WORK
Two areas are relevant for this paper, Smart Grid and

Consensus Protocols. As our proposal is based on the ARC-
P protocol, we present it in more details.

The Smart Grid is an emerging distributed CPS, which
should revolutionize the way in which energy is produced,
distributed, stored, and used. It should provide benefits to
all stakeholders. Customers should be able to benefit from
the lower energy prices as well as from the capability of
Smart Appliances (SA) to adjust dynamically to daily price
fluctuations. Providers can benefit because they can buy
and resell electricity produced at the customer site; more-
over, providers have the additional option to store energy at
the customer site. Coordinated energy usage by multiple SA
can reduce the energy spikes in the electric power grid, thus
reducing requirements and related costs of the power distri-
bution systems. All this should support sustainable growth
of the industry and reduce impact on the ecology.

In order to accomplish these tasks, beyond the physical
grid infrastructure, an extensive logical connection and co-
ordination between all involved Smart Grid components is
needed, e.g., between multiple Smart Appliances (SA) in-

stalled at the customer site and Smart Metering Infrastruc-
ture (SMI) owned by the electrical service provider.

Recent surveys of communication/networking and of rout-
ing protocols in Smart Grid are given in [3] and [15], respec-
tively. An overview of Smart Grid technologies and stan-
dards can be found in [4] and [1]. Cyber security and privacy
issues in Smart Grid are discussed in [10] and [13]. Stealthy
attacks on SCADA systems in Power Networks are studied
in [14] and [2].

Distributed consensus protocols are an important class of
distributed algorithms. The goal is to find an agreement
between all nodes without having any centralized unit. In
distributed consensus protocols, consensus is found based on
the values exchanged between immediate neighbors. Con-
sensus problems and conditions for reachability of consensus
have been intensively studied in [12] and [11].

Resilient Distributed Consensus is a special case of dis-
tributed consensus. It is assumed that a limited number of
malicious nodes are present that try to disrupt consensus by
providing false status information to their neighbors. In [7,
9] a fully distributed Adversary Resilient Consensus Proto-
col (ARC-P) has been introduced. The topological proper-
ties necessary for reaching consensus with ARC-P have been
studied in [8]. As we extend this protocol, we present it in
more details.

ARC-P operates on mesh networks. The basic assumption
is that the number of malicious nodes is bounded: there are
at most FTotal malicious nodes in the whole network and at
most FLocal malicious nodes in the neighborhood of every
genuine (i.e., non-malicious) node. Based on this assump-
tion, the ARC-P algorithm proceeds as follows. First, it
sorts the status values from all neighboring nodes. Then it
removes up to FLocal largest as well as up to FLocal small-
est values, which are strictly smaller or respectively larger
than the node’s own value. After that, it computes the av-
erage of the remaining values (including its own value) and
assigns this as the new value of the node.

Please note that ARC-P makes no assumptions about
trustworthiness of any neighboring nodes. Due to the ne-
cessity for multiple information flow paths, ARC-P can only
reach consensus in a mesh network topology.

3. PROBLEM FORMULATION
In this section, we first describe the Building Area Net-

work (BAN) scenario and then present the considered threat
model. Throughout this section we present arguments jus-
tifying our assumptions.

3.1 Scenario: Building Area Network (BAN)
in Smart Grid

The Home Area Network (HAN) and Building Area Net-
work (BAN) are important concepts in Smart Grid. They
provide an envelope for the interconnection between Smart
Appliances (SA) (e.g., washer, air conditioner, etc.) and
Smart Metering Infrastructure (SMI). Theoretically, it is
possible to provide redundant network connections between
SA and SMI. However, economic considerations, such as
costs of infrastructure, development, installation, and main-
tenance, are likely to prevent such solutions in HAN and
BAN areas. Consequently, the physical network topology
will be sparse, but sufficient for the purpose network infras-
tructure, and will resemble a tree topology (see Figure 1).
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Figure 1: Building Area Network (BAN) Network
Topology

Assuming the state of the art ”plug and play” scenar-
ios with auto-discovery capabilities, the logical topology of
interconnection between nodes will resemble the physical
topology with all communicating nodes arranged in a tree
(see Figure 2). The numbers within nodes in both figures
are voluntarily assigned IDs of all SA/AMI nodes. Numbers
near nodes in Figure 2 are arbitrarily selected initial values,
which will be discussed in more detail in Section 5.

Apt. 1 Apt. 2 Apt. 3 Apt. 4 Fl. 1 Fl. 2 Building 

Smart Appliances etc. 

Advanced Metering  

Infrastructure (AMI) 

10 20 40 50 60 80 90 100 110 130 140 150 160 170 190 200 210 220 230 240 250 

15 50 95 150 

168.18 26 

1 2 

3 

4 5 6 

7 

8 9 10 11 

12 

13 14 15 16 17 

18 

19 20 21 22 23 24 25 

Figure 2: Building Area Network (BAN) Overlay
Topology

Coordination between different SA is seen as one of the ad-
vantages of the Smart Grid, which, for instance, can reduce
energy spikes caused by simultaneously turning appliances
on or off. Such coordination between SA can be realized
in a distributed manner, in which various SA exchange in-
formation among themselves either directly or indirectly via
SMI. We assume that there will be no direct communication
between SA for the following reasons. Technically, coordi-
nation between different classes of SA eventually produced
by different manufacturers is a much harder problem than
coordination via AMI with the standardized interface. Fur-
thermore, within a single household such a solution remains
very scalable as the number of SA is limited. Last, but not
least, communication between SA from different households
is not likely to be allowed because of privacy and security
concerns.

3.2 Threat Model
In an environment like Smart Grid, or its constituent part

BAN, there is a clear distinction between the exposure of its
various components to attacks. For instance, physical access
to AMI is usually restricted to authorized personnel. Usu-
ally, there are also mechanisms in place to detect physical
or cyber manipulations on AMI.

On the other hand, various SA are owned by the resi-
dents who also have unrestricted physical access to it. This
makes SA exposed to various manipulations. Moreover, as

the number or the type of SA is neither restricted nor con-
trolled by the electricity provider, plugging in manipulated
devices as well as computers impersonating SA can be seen
as a plausible and cost-effective attack vector.

Consequently, we consider the following threat model. Only
leaf nodes (which represent various SA) in the connectivity
tree can be malicious. All non-leaf nodes (which represent
AMI) are considered to be genuine and behave according to
the consensus algorithm. The only attack we consider in this
work is injection of the false information by the malicious
nodes.

We are well aware that it is possible to perform at least
two further classes of attacks. First, infection of AMI, e.g.,
via exploiting a buffer overflow attack. A second attack is
DoS or DDoS attack either on the AMI or on SA. We explic-
itly omit consideration of these two classes of attacks for the
following reasons. A buffer overflow attack requires signif-
icantly greater effort than injection of false information by
compromised SA. Furthermore, AMI can be hardened to de-
tect and to collect evidence of an attempted buffer overflow
attack, thus opening the possibility of legal prosecution. Un-
like the code injection attacks, DoS and DDoS attacks can
be detected easily.

Figure 3: Neighborhood Area Network (NAN) Net-
work Topology

In the present work, we also omit consideration of attacks
on network components, e.g., on routers. Even though such
attacks are possible, their complexity as well as resources re-
quired are way beyond those required for attacks on SA. This
is especially true for the network infrastructure to which
BAN is connected, e.g., the Neighborhood Area Network
(NAN). At this level, it is common to have a core network
with redundant physical topology (a schematic example is
depicted in Figure 3), which is robust against both infras-
tructure failure and attacks on it.

3.3 Terms and Definitions
For the definition of various forms of consensus we use in

this paper, we have to introduce the following terms for the
tree G = {V,E}:
V = V SA ∪ V SMI : V SA ∩ V SMI = ∅
V SA = V g ∪ V m : V g ∩ V m = ∅
Here, V SA are all leaf nodes representing SA, V SMI all

non-leaf nodes representing SMI, V g all genuine leaf nodes,
and V m all malicious leaf nodes. We also introduce the
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function π(vi), which returns the parent node of any non-
root node vi and which returns vi if it is the root.

For this work, we are only interested in siblings among
leaf nodes. We define leaf siblings as

Ṽk = {vi : ∀vi ∈ V SA ∧ π{vi} = vk}
In the considered scenario, Smart Grid leaf nodes, i.e., all

kinds of SA, are the only active nodes. All non-leaf nodes,
which represent Smart Metering Infrastructure, act rather
as mitigating and filtering nodes.

We distinguish between following cases of consensus:

Global Consensus: We define Global Consensus as a con-
sensus among all genuine leaf nodes. In mathematical
terms,

∀vk(0) ∃t : vgi (t) = vgj (t) ∀vgi , v
g
j ∈ V

g,

where vk(0) represents initial value of any node, includ-
ing non-leaf and malicious ones, and vgi (t) and vgj (t) are
values of any two genuine leaf nodes after t rounds of
a consensus algorithm. Please note that this definition
emphasizes that there are no restrictions imposed on
the initial values of any node, including non-leaf ones.

Weak Partial Consensus: We define Weak Partial Con-
sensus as a consensus between all genuine nodes in at
least one sibling neighborhood, i.e., sharing the same
parent node:

∃Ṽk, t : ∀vi, vj ∈ Ṽk ∩ V g : vgi (t) = vgj (t)

Strong Partial Consensus: We define Strong Partial Con-
sensus as a consensus between all genuine nodes within
at least two leaf neighborhoods:

∃Ṽk, Ṽq, t : ∀vi, vj ∈ (Ṽk ∪ Ṽk) ∩ V g : vgi (t) = vgj (t)

No Consensus: We say that No Consensus can be reached
if no Weak Partial Consensus can be reached. We also
speak about absence of consensus in the case where
malicious node(s) can determine the consensus values
of all genuine nodes.

We further distinguish between FTotal and FLocal val-
ues. Whereas FTotal is the overall number of malicious leaf
nodes in the tree, FLocal is a reasonable assumption on how
many nodes in the neighborhood can provide malicious in-
formation (because they are malicious or because they were
outvoted by malicious nodes). FLocal acts as a parameter
for the original ARC-P algorithm as well as for the R.ARC-
P algorithm we will present in Section 4. We further as-
sume that FLocal assumption can be wrong. Therefore, by
the parents of leaf nodes, the maximal number of malicious
nodes can reach in extreme case FTotal value.

4. RANGE-BASED ARC-P
Based on our assumption that only leaf nodes can be ma-

licious, we can assume with the high confidence that par-
ent nodes generally provide (more) genuine information and
only child nodes can provide incorrect information. This al-
lows us to extend the ARC-P by always trusting the value of
a parent node, i.e., never exclude this value alongside with
a node’s own value. In our proposal, Range-based ARC-P
(R.ARC-P), we go one step further. For every node, we de-
clare that the range of values between the node’s own value
and its parent’s value is valid. Selection of the valid values
in R.ARC-P is graphically depicted in Figure 4.

Figure 4: Selection of valid values in R.ARC-P

A C-like pseudo code of R.ARC-P executed by every node
in the tree is depicted in Figure 5. The R.ARC-P algorithm
works as follows. First, the minimum and maximum values
of the – for this particular node in this particular round –
always valid value range (RangeMin and RangeMax) are
defined as the minimum and maximum of its own and par-
ent values, respectively. After sorting values from all peers
(including its own and parent values), up to FLocal smallest
nodes are removed, as long as they are strictly smaller than
RangeMin, and up to FLocal largest values are removed,
as long as they are strictly larger than RangeMax. In the
pseudo code, we use indices to the smallest (iRangeMin)
and biggest (iRangeMax) valid value as the means of ”re-
moval.”After that, an average of all valid values is computed.
Please note that arrPeerV als should contain all values from
all neighbors (including parent node) and its own value.
U:\!\R.ARC-P.c 1

RARCP (arrPeerVals, ownVal, parentVal, FLocal)

{

  RangeMin = min (ownVal, parentVal);

  RangeMax = max (ownVal, parentVal);

  sort (arrPeerVals);

  iRangeMin = 0;

  for (i=0; i<FLocal; iRangeMin++, i++)

    if ((arrPeerVals[iRangeMin] >= RangeMin)

      break;

  iRangeMax = sizeof(arrPeerVals)-1;

  for (i=0; i<FLocal; iRangeMax--, i++)

    if ((arrPeerVals[iRangeMax] <= RangeMax)

      break;

  newVal = 0;

  for (i=iRangeMin; i<iRangeMax; i++)

    newVal += arrPeerVals[i];

  newVal /= (iRangeMax-iRangeMin+1);

  return newVal;

}

Figure 5: R.ARC-P Algorithm
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5. EVALUATION
In this section, we first describe the settings for the ex-

periments and later present some of test results.
 

Malicious Nodes Reachability of Consensus 

FLocal FTotal ARC-P ARC-Pd R.ARC-P 

0 0 √ √ √ 

0 1 – – – 

1 0 – (–) √ 

1 1 – (–) √ 

1 2 – (–) (√) 

2 0 – (√) √ 

2 1 – (√) √ 

2 2 – (√) √ 

2 3 – (–) (√) 

2 5 – (–) (√) 

 √ Global Consensus 
 (√) Strong Partial Consensus 
 (–) Weak Partial Consensus 
 – No Consensus 

 
 

Table 1: Evaluation summary

5.1 Evaluation Setup
We have compared capabilities of ARC-P and R.ARC-P

to reach consensus on different tree topologies with different
initial values of all nodes. Furthermore, in order to over-
come the obvious restriction of ARC-P in the case of leaf
nodes (i.e., if FLocal is set to a value greater than zero no
information will flow towards the leaf), we have evaluated
how ARC-P with different FLocal values for leaf and non-
leaf nodes will perform. We call this variant ARCPd (”d” for
differentiated settings). In ARCPd all non-leaf nodes per-
form like original ARC-P with the specified FLocal, for leafs
FLocal is always set to 0.

For the sake of simplicity, all experiments presented in this
paper are run on the topology depicted in Figure 2. In this
figure, numbers within nodes indicate the arbitrarily selected
IDs of the nodes. Before the consensus algorithm starts, we
have initialized all leaf nodes with the value 10 ∗NodeID.
All non-leaf nodes are initialized with average values of their
children nodes. In Figure 2, all initial values are depicted
near nodes. Simulation experiments have been performed
with MATLAB.

In our experiments, we have varied the total number of
malicious nodes from zero to five, in all possible combina-
tions of their placement in leaf nodes. Independently of
the number of nodes, we have also varied the number of
expected malicious nodes from zero to three. During simu-
lation, all genuine nodes update their own value according
to the selected protocol, all malicious values do not deviate
from the initial value over time. This behavior simplifies
visual distinction on the graphics between values of genuine
and malicious nodes (values of malicious nodes are depicted
as straight horizontal lines). Not presented in this section,
we have also performed experiments with the values of mali-
cious nodes changing periodically. Results regarding reach-
ing consensus of different algorithms and their variations are
not influenced by these fluctuations.

Please note that in this work we assume that all neigh-
boring nodes exchange actual values, i.e., we don’t consider
the case when malicious nodes can provide different status
values to different neighbors.

5.2 Simulation Results
The summary of various experiments is summarized in

Table 1. The leftmost two columns specify FLocal and FTo-
tal numbers of adversaries during the experiment, i.e., the
expected (by the algorithm) maximal number of malicious
nodes in the neighborhood and the real number of mali-
cious nodes in the tree. The results of experiments are de-
picted in the remaining three columns for ARC-P, ARC-Pd,
and R.ARC-P protocols respectively. The results reflect the
worst case scenario, i.e., location of malicious nodes under
which the particular protocol performs the worst. Please
note that we assume that FLocal expectation can be wrong.
Therefore, the worst case scenario can reflect the situation
when up to FTotal malicious nodes are in the neighborhood
of a single node. We distinguish between the following four
cases of protocol performance: Global Consensus, Strong
Partial Consensus, Weak Partial Consensus, and No Con-
sensus (see Section 3.3 for the definition of these terms).

In the case when there are no malicious nodes in the
system and none are expected, all ARC-P, ARC-Pd, and
R.ARC-P perform similarly and produce identical conver-
gence behavior (see Figure 6).

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Figure 6: ARC-P, ARC-Pd, and R.ARC-P with FLo-
cal=0, FTotal=0

In the case when there is one malicious node and none is
expected, ARC-P, ARC-Pd, and R.ARC-P algorithms con-
verge as well, but this time to the value of the malicious
node (see Figure 7). Please note that in this figure, unlike
all other presented in this paper, 500 rounds are depicted.

In the case when nodes expect that one of their neighbors
is malicious, ARC-P cannot reach consensus even if there
are no malicious nodes in the tree (see Figure 8). The rea-
son is simple. As leaf nodes are only connected to their
parents, there is no other information source which can be
removed from the considerations nor are there any further
information flow paths which would ”feed” information to
the node.

The ARC-Pd configuration of ARC-P performs slightly
better (see Figure 9) - it is capable to reach Weak Partial
Consensus for all sub-trees representing apartments of BAN
as well as for the remaining SA of the building.

Under the same conditions, the proposed R.ARC-P algo-
rithm is able to reach consensus among all nodes in the tree
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Figure 7: ARC-P, ARC-Pd, and R.ARC-P with FLo-
cal=0, FTotal=1 (node 4)
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Figure 8: ARC-P with FLocal=1, FTotal=0
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Figure 9: ARC-Pd with FLocal=1, FTotal=0

(see Figure 10). The reason is that all leaf nodes are trust-
ing parents and – if they are genuine - their own value will
always asymptotically converge to the value of their parent
nodes.
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Figure 10: R.ARC-P with FLocal=1, FTotal=0

As even expectation of a single malicious node in the
neighborhood prevents ARC-P protocol from converging, we
will not present further examples with higher real and higher
FLocal and FTotal.

Throughout our experiments, we have seen that R.ARC-
P converges in all cases if the number of expected malicious
nodes is correct, i.e., identical or greater than the real num-
ber of malicious nodes in the neighborhood. For instance, in
Figure 11 an example is present with up to 3 malicious nodes
in neighborhood, even though totally 5 malicious nodes are
present in the system. R.ARC-P shows very fast conver-
gence of all genuine nodes to the same value.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Figure 11: R.ARC-P with FLocal=3, FTotal=5 (ma-
licious nodes: 4, 5, 6, 8, and 9)

Please note that, even under the same graph topology and
initial values of nodes, the ultimate convergence value can
vary influenced by the number of expected malicious nodes.
This convergence error is introduced by removing outlier
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values from the computation of a new state value. The re-
sult is identical with the behavior of ARC-P protocol and
is a ”price” paid for the resilience against false information
injection.

6. DISCUSSION
In this section, we first provide a brief discussion about

underlying graph theoretical reasons for the different per-
formance of the evaluated distributed consensus protocols.
Then we outline ideas how the presence of false information
can be detected and how malicious nodes can be localized if
R.ARC-P protocol is used.

6.1 Reasoning about R.ARC-P Performance
Considering a generic graph in which ARC-P, ARC-Pd,

and R.ARC-P tries to find a consensus can be seen as an
information flow problem in a dynamic digraph, i.e., directed
graph (for the related discussion see, e.g., [6, 5]). Exclusion
of values of some neighbors is equivalent to the removing
in edges comming from these nodes. Therefore, if ARC-P is
applied in the tree with FLocal ≥ 1, no information can flow
towards leafs because edges from their parents are removed.

In the ARC-Pd, setting FLocal = 0 for all leafs fixes this
problem only to some extent. This ensures that information
is always flowing from the leaf parents to their leafs, thus cre-
ating preconditions for the Weak Partial Consensus around
values of the leaf parents. However, indiscriminate treat-
ment of all neighbors by non-leaf nodes enables removal of
edges which makes graph disconnected, making global con-
sensus impossible.

R.ARC-P fixes this problem by introducing hierarchical
trust relationships between nodes. This alone ensures that
there always exists a spanning tree in a digraph, starting at
the root of the tree in which consensus should be reached.
This, in turn, ensures that even in the worst case scenario all
genuine nodes converge to the value of the root node. The
introduction of the valid range (between own and parent
node values) decreases the number of edges to be removed,
thus fostering the ”upstream” information flow from leafs to
the root. Furthermore, the presence of the values in the
range between own and parent node values, their number,
and their values influence the convergence speed of a node’s
own value towards the value of the parent node. Therefore,
R.ARC-P always reaches Global Consensus if FLocal is esti-
mated correctly and tends to reach Strong Partial Consensus
if the FLocal estimation was wrong.

6.2 Localization of Malicious Nodes
As we have thought during simulations, the R.ARC-P will

not converge to a single consensus value if the number of ma-
licious nodes in the neighborhood is underestimated. How-
ever, we would like to emphasize an interesting convergence
behavior in this case. Figure 12 depicts the state devel-
opment with nodes 5 and 6 malicious (i.e., FTotal=2) and
expected number of malicious nodes FLocal=1.

According to the experimental setup, malicious nodes keep
their own values unchanged. The genuine node 4 will con-
verge to the value of its parent node 7. The node 7, however,
will ”stabilize” at the value between node 6 (an malicious
nodes which considered genuine because of the wrong es-
timation) and node 26 (a parent node). This observation
allows us to perform detection and – to some extent – lo-

0 10 20 30 40 50 60 70 80 90 100
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Figure 12: R.ARC-P with 1 malicious nodes ex-
pected and 2 present (nodes 5 and 6)

calization of the malicious node(s). We distinguish between
the following cases:

• A parent node can monitor the behavior of the children
leaf nodes. If they refuse to converge towards the value
of the parent node, these nodes can be identified as
malicious.

• In the case if child node, which is not a leaf node, does
not converge, the assumption can be made that this
child node was outvoted by an exceeding number of
malicious children nodes.

• In the case of self-observation of a non-leaf node, its
inability to converge with the parent node indicates
that the number of malicious children is higher than
expected.

These observations have two consequences. First of all, it
is possible to identify misbehavior and – to some extent –
localization of malicious node(s). Second, it opens the pos-
sibility for a dynamic adaptation of the number of expected
malicious nodes in the neighborhood. We plan to evaluate
both of these possibilities in more details in our future work.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel resilient dis-

tributed consensus protocol, Range-based Adversary Resilient
Consensus Protocol (R.ARC-P). Compared to the ARC-P
protocol it extends, R.ARC-P has three main differences
from ARC-P. First, whereas ARC-P requires mesh topol-
ogy in order to reach consensus, R.ARC-P operates on the
tree topology. Second, ARC-P is an indiscriminate protocol,
treating all nodes in the neighborhood equally; R.ARC-P is a
discriminating protocol introducing different trust relation-
ships based on the child-parent relation in the tree topology.
Third, in ARC-P, the only value that is always trusted is a
node’s own value; in R.ARC-P, the range of values between
a node’s own value and the value of the parent node is con-
sidered as trustworthy. With the simulation results we have
shown that R.ARC-P can always reach Global Consensus if
FLocal assumption is correct and can reach Strong Partial
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Consensus if it is not. We have discussed the graph theo-
retical reasons behind this behavior. Furthermore, we have
outlined a procedure allowing localization of malicious nodes
if R.ARC-P algorithm is used.

In our future work, we plan to investigate the consen-
sus problem in scale-free networks, which can be seen as a
combination of mesh and tree sub-networks. An immediate
assumption is that the original ARC-P should be applied
for in the mesh part of such networks whereas the R.ARC-
P protocol proposed in this paper in the tree sub-networks.
We plan to evaluate the interplay of these two protocol vari-
ations.

Last but not least, even though in this work we have omit-
ted discussing infection and DoS attacks, we are planning to
investigate the influence of such attacks on the distributed
consensus algorithm. Most interestingly, we are planning to
analyze the question whether a combination of application
and network level attacks can give an adversary a significant
advantage, and, if it is the case, under what conditions.
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