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ABSTRACT
In this paper, we study algorithms for determining the robustness
of a network. Network robustness is a novel graph theoretic prop-
erty that provides a measure of redundancy of directed edges be-
tween all pairs of nonempty, disjoint subsets of nodes in a graph.
The robustness of a graph has been shown recently to be useful for
characterizing the class of network topologies in which resilient
distributed algorithms that use purely local strategies are able to
succeed in the presence of adversary nodes. Therefore, network ro-
bustness is a critical property of resilient networked systems. While
methods have been given to construct robust networks, algorithms
for determining the robustness of a given network have not been
explored. This paper introduces several algorithms for determining
the robustness of a network, and includes centralized, decentral-
ized, and distributed algorithms.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.4 [Performance of Systems]: Fault tolerance

General Terms
Algorithms, Security, Theory

Keywords
Network Robustness; Resilience; Distributed Algorithm; Adver-
sary

1. INTRODUCTION
Network connectivity has long been the key metric in the anal-

ysis of fault-tolerant and secure distributed algorithms [3]. This
is because (strong) connectivity formalizes the notion of redun-
dant information flow across a network through independent paths.
Thus, for algorithms that seek to relay or encode information across
multiple hops in the network, connectivity precisely captures the
necessary property for analysis [3,5]. More generally, for tasks that
require nonlocal information, such as detection of adversary nodes,
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connectivity is the central property for characterizing the necessary
topologies [11, 15]. However, whenever purely local strategies are
employed, connectivity is no longer the key metric.

For algorithms that use purely local information, the nodes make
decisions and act based on their sensor measurements, calculations,
dynamics, and direct interactions with neighbors in the network.
No global information is shared or assumed to be known. Instead,
information is disseminated within components of the network in
an iterative or diffusive manner, rather than being relayed or routed
across the network. For these reasons, purely local algorithms are
well suited to large-scale dynamic networks. Indeed, purely local
strategies are employed in biology and nature [13]; e.g., flocking
of birds and schooling of fish are postulated to arise from local in-
teraction rules [13]. From an engineering perspective, examples of
algorithms that are explicitly designed to use purely local strate-
gies include iterative function calculation and iterative consensus
algorithms [14], as well as gossip-based algorithms [2, 6].

Edge reachability and network robustness are important proper-
ties for analyzing algorithms that use purely local strategies [7, 9,
17]. It has been shown that any nontrivially robust network has a
directed spanning tree [17]. In fact, 1-robustness1 is equivalent to
the existence of a directed spanning tree [17]. Moreover, for iter-
ative consensus algorithms in a time-invariant network, existence
of a directed spanning tree is a necessary and sufficient condition
for achieving agreement among the nodes [12]. However, the full
utility of edge reachability and network robustness is realized only
when considering fault-tolerant and resilient dissemination of in-
formation in a network through purely local strategies. This is be-
cause edge reachability – which is defined for a nonempty set –
captures the requirement that enough nodes inside the set are suffi-
ciently influenced from outside the set. There are two forms of re-
dundancy present in the definition of edge reachability: redundancy
of incoming links from outside and redundancy of such nodes with
redundant incoming links from outside. This dual redundancy en-
ables resilience against faulty information produced by either a suf-
ficiently small number of neighboring nodes from outside the set or
from a sufficiently small number of nodes from within the set. Ro-
bustness is a network-wide property that stipulates a lower bound
on the edge reachability properties of a sufficiently large number
of subsets of nodes. Just as resilient distributed algorithms using
nonlocal information utilize the redundancy of independent paths
afforded by sufficient connectivity [11, 15], resilient distributed al-
gorithms using purely local information utilize the redundancy of
local information present in robust networks [7, 9, 17].

In previous work, the utility of edge reachability and network ro-
bustness as metrics for analysis of resilient distributed algorithms
that use only local information has been demonstrated [8,9,17]. In

1See Section 2 for the formal definition of robustness.
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particular, it is shown in [9] that (F + 1, F + 1)-robustness is the
necessary and sufficient condition for achieving resilient asymp-
totic consensus in a time-invariant network in the presence of up to
F malicious adversary nodes that seek to disrupt consensus. Hence,
determining the robustness of a network is important for determin-
ing whether resilient distributed algorithms can succeed. A growth
model for constructing large robust networks from small ones has
been given in [17] and extended in [9]. This growth model en-
tails the preferential attachment model of scale-free networks [1],
which implies that many scale-free networks are nontrivially ro-
bust. In [16], it has been shown that the threshold function of ran-
dom graphs coincide for robustness and connectivity, which im-
plies that random graphs with high connectivity are also highly ro-
bust. These results imply that many complex networks are in fact
robust. However, as of yet, no algorithms have been given for de-
termining the robustness of a network.

In this paper we propose algorithms to determine the robustness
of a given network. In particular, two centralized algorithms are in-
troduced. The first algorithm checks for a given amount of robust-
ness and the second one determines the robustness of any network,
regardless of its connectedness properties. These algorithms as-
sume the topology of the network is given as input to the algorithm
(encoded by the adjacency matrix). A decentralized algorithm is
proposed that enables the individual nodes of an undirected, con-
nected network to compute the robustness of the network in a de-
centralized manner by broadcasting information about their neigh-
borhood in order to locally reconstruct the network topology. The
centralized algorithm is then used at each node to determine the
overall robustness. A modification to this decentralized algorithm
is proposed in which each individual node only checks the edge
reachability conditions for subsets in which it is not included, thus
resulting in a truly distributed algorithm. For these algorithms, we
analyze their complexity and examine the improvement gained by
the distributed algorithm.

The rest of the paper is organized as follows. Section 2 reviews
the definition of edge reachability and network robustness, and re-
calls several useful properties of robust networks. Section 3 de-
scribes the nature of the problem of determining network robust-
ness and proposes centralized, decentralized, and distributed algo-
rithms to do so. Section 4 summarizes the work and provides di-
rections for future work.

2. NETWORK ROBUSTNESS
Network robustness is a property of a network that formalizes

the notion of sufficient redundancy of directed information flow
between subsets of nodes in the network. Therefore, this property
is generally defined for a finite, simple directed graph D = (V, E).
Without loss of generality, V = {1, 2, . . . , n} is the set of nodes
in the network and each directed edge (i, j) ∈ E indicates that
node i is capable of transmitting information to node j. In this
case, node i is an in-neighbor of node j and node j is an out-
neighbor of node i. The set of in-neighbors of node i is denoted
N in

i = {j ∈ V : (j, i) ∈ E} and the in-degree of node i is denoted
din
i = |N in

i |. In order to define network robustness, we require the
following definition [7, 9].

DEFINITION 1 ((r, s)-EDGE REACHABLE SET). Given a non-
trivial digraph D and a nonempty subset of nodes S, we say that
S is an (r, s)-edge reachable set if there are at least s nodes in S
with at least r in-neighbors outside of S, where r, s ∈ Z≥0; i.e.,
given X r

S = {i ∈ S : |N in
i \ S| ≥ r}, then |X r

S | ≥ s.

A general illustration of an (r, s)-edge reachable set of nodes is
shown in Figure 1. The parameter s in the definition of (r, s)-edge

Figure 1: Illustration of an (r, s)-edge reachable set of nodes.

reachability quantifies a lower bound on the number of nodes in the
set with at least r in-neighbors outside S. Hence, the parameter r
quantifies the redundancy of directed edges coming from outside
and the parameter s quantifies the redundancy of nodes with suffi-
cient outside influence.

Observe that, in general, a set is (r, s′)-edge reachable, for s′ ≤
s, if it is (r, s)-edge reachable. At one extreme, whenever there
are no nodes in S with at least r in-neighbors outside of S, then
S is only (r, 0)-edge reachable. At the other extreme, S can be at
most (r, |S|)-edge reachable. Edge reachability is used to define
the global property of robustness [7, 9].

DEFINITION 2 ((r, s)-ROBUSTNESS). A nonempty, nontrivial
digraph D = (V, E) on n nodes (n ≥ 2) is (r, s)-robust, for
nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for every pair
of nonempty, disjoint subsets S1 and S2 of V at least one of the
following holds (recall X r

Sk
= {i ∈ Sk : |N in

i \ Sk| ≥ r} for
k ∈ {1, 2}):

(i) |X r
S1
| = |S1|;

(ii) |X r
S2
| = |S2|;

(iii) |X r
S1
|+ |X r

S2
| ≥ s.

By convention, if D is empty or trivial (n ≤ 1), then D is (0,1)-
robust. If D is trivial, D is also (1,1)-robust.2

Note that an (r, 1)-edge reachable set is abbreviated as r-edge reach-
able, and an (r, 1)-robust digraph is abbreviated as r-robust.

We adopt a total order for (r, s)-robustness that gives precedence
to the r parameter in determining the relative robustness of a net-
work. The maximal s in (r, s)-robustness is then used for ordering
the robustness of two r-robust digraphs with the same value of r.
The reason for adopting this convention is twofold. There are di-
graphs in which the parameter s may take on any value, and in
such cases s loses its precise meaning. On the other hand, there are
properties that show the utility of the parameter r in characterizing
the robustness of a given digraph [8]. For example, the following
properties provide the upper bound r ≤ min{δin(D), ⌈n/2⌉} on
the value of r for any digraph on n nodes, where δin(D) is the min-
imum in-degree of D.

PROPERTY 1 (MAXIMUM ROBUSTNESS [8]). No digraphD
on n nodes is (⌈n/2⌉ + 1)-robust. Conversely, the complete di-
graph, denoted Kn = (V, EKn), with EKn = {(i, j) ∈ V×V : i ̸=
j}, is (⌈n/2⌉, s)-robust, for 1 ≤ s ≤ n. Furthermore, whenever
n > 1 is odd, Kn is the only digraph on n nodes that is (⌈n/2⌉, s)-
robust with s ≥ ⌊n/2⌋.

2The trivial graph is defined to be both (0,1)-robust and (1,1)-robust
for consistency with properties of robust networks for n > 1 [8].
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PROPERTY 2 (MINIMUM IN-DEGREE [8]). Given an (r, s)-
robust digraph D = (V, E), with 0 ≤ r ≤ ⌈n/2⌉ and 1 ≤ s ≤ n,
the minimum in-degree of D, δin(D), is at least

δin(D) ≥

{
r + s− 1 if s < r;
2r − 2 if s ≥ r.

3. ALGORITHMS

3.1 Centralized Algorithms
In this section, we present centralized algorithms for checking

and determining robustness. The direct manner to check a digraph
to determine whether it is (r, s)-robust is a combinatorial prob-
lem. Because the sets in each pair considered are required to be
nonempty and disjoint, the total number of pairs R(n) that must be
checked is

R(n) =

n∑
k=2

(
n

k

)(
2k−1 − 1

)
, (1)

where

• n = |V| is the number of nodes;

• each k = 2, 3, . . . , n in the sum is the size of the k-subsets
of V = {1, 2, . . . , n}. Each k-subset of V is partitioned into
exactly two nonempty parts, S1 and S2;

•
(
n
k

)
is the number of k-subsets of {1, 2, . . . , n};

• 2k−1 − 1 = S(k, 2) is a Stirling number of the second kind,
and is the number of ways to partition a k-set into exactly two
nonempty unlabeled subsets (swapping the labels S1 and S2
results in the same pair)3.

The form of (1) implies an algorithm for checking (r, s)-robustness
of a digraph, CheckRobustness, which is shown in Algorithm 3.1.
CheckRobustness takes as input values of r and s4 and the adja-
cency matrix of the digraph, A(D) = [aij ], which is defined by [4]

aij =

{
1 (i, j) ∈ E;
0 (i, j) /∈ E.

CheckRobustness returns a Boolean variable indicating whether the
digraph is (r, s)-robust along with a pair of sets with which the
conditions fail. If the digraph is (r, s)-robust, the sets returned are
empty sets. The algorithm iterates through all possible pairs of
nonempty disjoint subsets, S1,S2 ⊂ V , and checks conditions (i)-
(iii) of Definition 2 using the adjacency matrix. To improve the
performance on digraphs that fail the test, the algorithm returns the
first pair that fails.

3The quantity may be argued directly by noticing that for each of
the k elements, we have two choices: S1 or S2. But, we have
to subtract the two sequences of choices resulting in S1 = ∅ or
S2 = ∅. Finally, because the labels on the sets S1 and S2 are
unimportant to the uniqueness of the nonempty partition, we divide
by 2.
4Since all digraphs are 0-robust, and by Property 1 no digraph is
r-robust with r > ⌈n/2⌉, it follows that one should only check
1 ≤ r ≤ ⌈n/2⌉, 1 ≤ s ≤ n.

Algorithm 3.1: CHECKROBUSTNESS(A(D), r, s)

procedure ROBUSTHOLDS(A(D),S1,S2, r, s)
isRSRobust← false , sr,1 ← 0, sr,2 ← 0
for each k ∈ {1, 2}
for each i ∈ Sk{

if
∑

j∈N in
i \Sk

aji ≥ r

then sr,k ← sr,k + 1
if (sr,1 == |S1|) or (sr,2 == |S2|) or (sr,1 + sr,2 ≥ s)

then isRSRobust← true
return (isRSRobust)

main
isRSRobust← true
for k ← 2 to n

for each Ki ∈ Kk (i = 1, 2, . . . ,
(
n
k

)
)

comment:Kk is the set of
(
n
k

)
unique k-subsets of V

for each Pj ∈ PKi (j = 1, 2, . . . , 2k−1 − 1)
comment: PKi is the set of partitions of Ki

with exactly two nonempty parts
comment: Pj = {S1,S2}
if not ROBUSTHOLDS(A(D),S1,S2, r, s)

then
{
isRSRobust← false
return (isRSRobust,S1,S2)

S1 ← ∅,S2 ← ∅
return (isRSRobust,S1,S2)

The second algorithm, called DetermineRobustness (and given
in Algorithm 3.2), determines (r, s)-robustness of any digraph, re-
gardless of the number of components of the digraph. To do this,
it requires the adjacency matrix A(D) as input. DetermineRobust-
ness first initializes r and s to the maximum values possible for any
digraph on n nodes (see Properties 1 and 2). Then, as in CheckRo-
bustness, DetermineRobustness iterates through all possible pairs
of nonempty disjoint subsets, S1,S2 ⊂ V , and checks conditions
(i)-(iii) of Definition 2. In this case, instead of terminating upon a
failing condition, the value of s is first decremented. Once all val-
ues of s are checked for the given value of r, the algorithm decre-
ments r and restores s to its maximal value of n. If the digraph
has no directed spanning tree (i.e., if it is not 1-robust), then De-
termineRobustness returns (r = 0, s = n). Using this approach,
DetermineRobustness returns the maximal values r and s such that
D is (r, s)-robust.5

It is clear from the form of R(n) in (1) that these algorithms are
not efficient. In fact, we show next that the algorithms are expo-
nential in the square root of the size of the input (in this case, the
adjacency matrix, which has size n2). To analyze the complexity
of the algorithms, we recall the following definition.

DEFINITION 3. Given f, g : R → R, then f ∈ O(g(x)) if
there exists c ∈ R>0 and x0 ∈ R such that |f(x)| ≤ c|g(x)|
for all x ≥ x0.

We define the worst-case complexity of an algorithm as the max-
imal number of steps T (m) required to complete the algorithm
whenever the input is of size m. We say the worst-case complexity
of an algorithm is O(g(m)) if T (m) ∈ O(g(m)).

5Recall from Section 2 that the total order on robustness compares
the value of r first, and then compares the value of s for networks
with the same r.
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Algorithm 3.2: DETERMINEROBUSTNESS(A(D))

r ← min{δin(D), ⌈n/2⌉}
comment: δin(D) is the minimum in-degree of D
s← n
for k ← 2 to n

for each Ki ∈ Kk (i = 1, 2, . . . ,
(
n
k

)
)

comment:Kk is the set of
(
n
k

)
unique k-subsets of V

for each Pj ∈ PKi (j = 1, 2, . . . , 2k−1 − 1)
comment: PKi is the set of partitions of Ki with exactly

two nonempty parts

comment: Pj = {S1,S2}
isRSRobust← ROBUSTHOLDS(A(D),S1,S2, r, s)
if (isRSRobust == false ) and (s > 0)

then s← s− 1
while (isRSRobust == false ) and (r > 0)

do



while (isRSRobust == false ) and (s > 0)

do


isRSRobust
← ROBUSTHOLDS(A(D),S1,S2, r, s)

if not isRSRobust
then s← s− 1

if (isRSRobust == false )

then
{
r ← r − 1
s← n

if r == 0
then return (r, s)

return (r, s)

PROPOSITION 1. Algorithms 3.1 and 3.2 have worst-case com-
plexityO(m3

√
m) where m = n2 is the size of the input (the adja-

cency matrix).

PROOF. The procedure RobustHolds requires O(n2) steps be-
cause Sk contains O(n) elements and the summation in the if-
statement requires O(n) steps. In worst-case, there will be R(n)
calls to RobustHolds in Algorithm 3.1 and R(n) + g(n) in Algo-
rithm 3.2, where g(n) ∈ O(n2) (since in Algorithm 3.2 there will
be at most an additional (⌈n/2⌉−r)(n)+n−s calls to RobustHolds
in an (r, s)-robust digraph caused by decrementing the values of r
and s from their initial values). Therefore, in either case, there are
O(R(n)) calls to RobustHolds, and hence,O(n2R(n)) steps in the
worst case. Finally, to bound R(n), we use the Binomial Theorem
to obtain

R(n) =

n∑
k=2

(
n

k

)
(2k−1 − 1)

≤
n∑

k=2

(
n

k

)
2k1n−k

≤
n∑

k=1

(
n

k

)
2k1n−k

≤ 3n.

Therefore, Algorithms 3.1 and 3.2 are O(m3
√

m), where m =
n2.

The complexity of Algorithms 3.1 and 3.2 are typical of any algo-
rithm that determines the robustness of a network. This is because
determining robustness is an NP-hard problem [16].

3.2 Network Model
The remaining algorithms operate in a decentralized manner in

a time-invariant network. To model the network, we consider the
undirected graph G = (V, E), where V = {1, ..., n} is the node
set and E ⊂

(V
2

)
is the edge set. Each edge {i, j} ∈ E indicates

that nodes i and j can exchange information. Each node i ∈ V
is aware of its own identifier i ∈ V and its neighbor set Ni. The
diameter of the graph is denoted diam. Additionally, all nodes
are normal; i.e., V = N . The network is assumed to be connected
and fully synchronous with reliable communication. The execution
of the distributed algorithm in the synchronous network progresses
in rounds mapped to the nonnegative integers, Z≥0. We assume
multiple messages may be sent in a given round and that messages
may be of arbitrary size.

3.3 A Decentralized Algorithm
In this section, we present a decentralized algorithm for deter-

mining the robustness of a connected network. The main idea of the
algorithm is for the nodes to share information about their neigh-
borhood in such a way so that each node obtains the topological in-
formation about the network. Once this information is obtained, the
centralized algorithm, DetermineRobustness, may be used to deter-
mine the robustness. The decentralized algorithm, DecentralDe-
termineRobust is shown in Algorithm 3.3. The algorithm uses sev-
eral procedures: LeaderElectBFSTree, InitiateConvergecast, Par-
ticipateConvergecast, Broadcast, ParticipateBroadcast, and Deter-
mineRobustness.

The first procedure is LeaderElectBFSTree. LeaderElectBFSTree
takes as input the node’s ID and its neighbor set, and outputs a
leader ID, a parent node, and a set of children nodes. Leader-
ElectBFSTree elects a leader in the network using parallel execu-
tions of Breadth-First Searches (BFSs) [10]. Each node initiates
a modification of the SynchBFS algorithm of [10]. To do this,
a calculation of the maximum ID is bootstrapped to the Breadth-
First Search (BFS) tree construction. The node with the maximum
ID is declared the leader, and the BFS tree with the leader as the
root node is the BFS tree used in the subsequent convergecast and
broadcast procedures.

Algorithm 3.3: DECENTRALDETERMINEROBUST(IDi,Ni)

(Leader, Par, Chldrn)← LEADERELECTBFSTREE(IDi,Ni)
if (Leader == IDi)

then
{
A(G)← INITIATECONVERGECAST(IDi, Chldrn)
BROADCAST(A(G), Chldrn)

else
{

PARTICIPATECONVERGECAST(IDi,Ni, Par, Chldrn)
A(G)← PARTICIPATEBROADCAST(Par,Chldrn)

(r, s)← DETERMINEROBUSTNESS(A(G))
return (r, s)

In LeaderElectBFSTree all variables are associated to the initi-
ating node’s ID because n parallel executions run simultaneously.
There are three types of messages involved in the BFS tree con-
struction: search, respond, and propagate messages. The search
message, with node i as the initiating node, contains the sending
node’s ID (initially i), the maximum ID seen so far (initially i),
and the initiating node’s ID (also i in the first round). Each node
(other than i) is initially unmarked. Whenever an unmarked node
receives a search message (or possibly multiple search messages
from different neighbors), it becomes marked. The receiving node
sets the maximum ID variable as the max of the received maximum
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IDs and chooses one of the senders as its parent. It then sends a re-
spond message to each neighbor from which it received a search
message. The respond message contains its ID, a binary variable
indicating whether the node was selected as parent, and the ID of
the initiating node i. The next round, the marked node sends a
search message to all of its neighbors to continue the construction
of the BFS tree. Whenever a marked node receives a respond mes-
sage, it checks to see if it is selected as the node’s parent, and if
so, it adds the node’s ID to its children list. After each node sends
its search message, it waits to receive all respond messages from
neighbors. Once it receives all of its respond messages, it knows
whether it is a leaf node in the BFS tree (i.e., if none of its neigh-
bors selects it as parent). If a node is not a leaf node, it waits to
receive propagate messages from all of its children. If it is a leaf
node, it sends a propagate message to its parent, which contains the
maximum ID it has seen. Once a non-leaf node receives propagate
messages from all of its children, it takes the max of the maximum
IDs and sends a propagate messages to its parent. Eventually, the
initiating node i receives propagate messages from all of its chil-
dren and then knows the maximum ID in the network. The node
with the maximum ID asserts itself as the leader. The parent and
children variables returned by LeaderElectBFSTree correspond to
the node’s parent and children in the BFS tree with the leader as
the initiating node. If i is the leader, it selects itself as the par-
ent (or the null symbol). LeaderElectBFSTree requires O(diam)
rounds andO(diam|E|) messages for each of the n parallel execu-
tions [10]. Hence, in total, LeaderElectBFSTree requiresO(diam)
rounds and O(n× diam|E|) messages.

Once LeaderElectBFSTree terminates, the leader node is deter-
mined and its BFS tree is constructed, which provides an efficient
mechanism for convergecast and broadcast. In DecentralDeter-
mineRobust, if node i is the leader, it initiates a convergecast using
InitiateConvergecast. If node i is not the leader it participates in
the convergecast using ParticipateConvergecast. InitiateConverge-
cast takes as input the leader’s own node ID and the children list
(which is just the neighbor set of the leader node). ParticipateCon-
vergecast takes as input the node’s own ID and its neighbor set,
as well as the parent and children determined by LeaderElectBF-
STree. In InitiateConvergecast and ParticipateConvergecast, there
are two types of messages: downstream and upstream messages.
Downstream messages are sent in the direction of leaf nodes, and
upstream messages are sent in the direction of the leader (root)
node. The leader node starts the convergecast by sending a down-
stream message containing its node ID and neighbor set to its chil-
dren of the BFS tree constructed by LeaderElectBFSTree. Each
node is initially unmarked and waits to receive a downstream mes-
sage from its parent. Each downstream message contains a list of
pairs, each containing a node ID and the neighbors of the node ID.
Once a downstream message is received from its parent, the node
becomes marked. The node adds it own node ID and neighbor set
to the list of pairs, and sends this list in its downstream message to
its children. Once the downstream message is sent, the node waits
to receive upstream messages from all of its children. Whenever a
leaf node receives its downstream message, it similarly adds its pair
and sends the upstream message to its parents. The upstream mes-
sages are created by consolidating the neighbor lists in the upstream
messages received from all of the node’s children. Once the leader
(root) node receives the upstream messages from its children, it
can construct the adjacency matrix A(G), which is the quantity re-
turned in InitiateConvergecast. Once each non-leader node sends
its upstream message, it begins its ParticipateBroadcast procedure.
The convergecast procedure requires O(diam) rounds and O(|E|)
messages [10].

After the convergecast procedure terminates, the leader node has
the adjacency matrix A(G). It then initiates a broadcast using the
BFS tree to provide the other nodes with the adjacency matrix.
Each non-leader node waits for the adjacency matrix to arrive from
its parent, and then relays the information to its children. Upon
sending its message, the node then calls DetermineRobustness to
obtain the values of r and s. The broadcast operation requires
O(diam) rounds and O(|E|) messages [10]. By combining the
message and round complexity of the procedures in DecentralDe-
termineRobust, it follows that DecentralDetermineRobust requires
O(diam) rounds and O(n × diam|E|) messages. Of course, De-
centralDetermineRobust also inherits the worst-case complexity of
DetermineRobustness given in Proposition 1.

3.4 A Distributed Algorithm
Here, we present a distributed algorithm for determining the ro-

bustness of a connected network. Instead of simply using the cen-
tralized algorithm, DetermineRobustness, after obtaining the adja-
cency matrix, as was done in Algorithm 3.3, in this case the compu-
tation required to determine robustness is reduced by only checking
the edge reachability properties in subsets in which the node is not
a member. The BFS tree construction is again used to elect a leader
and provide an efficient means to broadcast information. In this al-
gorithm, however, a second convergecast/broadcast sequence must
be performed after the estimates of r and s are determined in order
for the nodes to obtain the true values of r and s. DistributedDe-
termineRobust is given in Algorithm 3.4.

Algorithm 3.4: DISTRIBUTEDDETERMINEROBUST(IDi,Ni)

(Leader, Par, Chldrn)← LEADERELECTBFSTREE(IDi,Ni)
if (Leader == IDi)

then
{
A(G)← INITIATECONVERGECAST(IDi, Chldrn)
BROADCAST(A(G), Chldrn)

else
{

PARTICIPATECONVERGECAST(IDi,Ni, Par, Chldrn)
A(G)← PARTICIPATEBROADCAST(Par,Chldrn)

(r̂, ŝ)← DETERMINEPARTIALROBUST(A(G), IDi)
if (Leader == IDi)

then
{
(r, s)← INITIATECONVERGECAST2(r̂, ŝ, Chldrn)
BROADCAST2(r, s, Children)

else
{

PARTICIPATECONVERGECAST2(r̂, ŝ, Par, Chldrn)
(r, s)← PARTICIPATEBROADCAST2(Par,Chldrn)

return (r, s)

Before describing DeterminePartialRobust, we explain the dif-
ference in the second convergecast/broadcast sequence. In the sec-
ond sequence, the nodes must determine the true values of r and
s from their estimates. Therefore, the downstream and upstream
messages of InitiateConvergecast2 and ParticipateConvergecast2
contain the minimum value of r seen along the downstream path,
along with the minimum value of s seen for the given minimum
value of r. For example, if a node’s estimate is (r̂ = 4, ŝ = 1) and
it receives a downstream message containing (r̂ = 3, ŝ = 3), then
the pair sent in the next downstream message is (r̂ = 3, ŝ = 3).
Similarly, once the downstream paths reach leaf nodes, the up-
stream messages are determined similarly. Once the leader node
receives the upstream messages from its children, it can determine
the true values of r and s. These values are used in the second
broadcast.

DeterminePartialRobust is shown in Algorithm 3.5. Because
the network is assumed to be connected, the network is at least
1-robust. Therefore, all subsets not including node i are always
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checked in DeterminePartialRobust when called from Distributed-
DetermineRobust under the assumption of a connected network.
Since decrementing r and s requires at most O(n2) steps, this im-
plies that all nodes will complete DeterminePartialRobust within
O(n2) steps of each other.

For the performance improvement of DeterminePartialRobust,
observe that by eliminating the sets in which i is an element, De-
terminePartialRobust effectively reduces the problem from size n
to n − 1. That is, there are R(n − 1) pairs of subsets to check
in DeterminePartialRobust, instead of R(n) pairs of subsets, as in
DetermineRobustness. By using Pascal’s Rule(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

we can show that the number of pairs of subsets that are avoided in
DeterminePartialRobust is

R(n)−R(n− 1) =

n−1∑
k=1

(
n− 1

k

)
(2k − 1).

Notice that the number of pairs above is also the number of sub-
sets in which i is a member. The difference between this number
and R(n− 1) is

n− 1 +

n−1∑
k=2

(
n− 1

k

)
(2k−1 + 1) > R(n− 1)

Therefore, it is more than twice as efficient to check the subsets in
which i is not a member rather than checking only subsets in which
it is a member. However, the worst-case complexity of the algo-
rithm is not improved. Also, the round and message complexity for
rounds in which communication is needed coincide with the round
and message complexity of the decentralized algorithm.

Algorithm 3.5: DETERMINEPARTIALROBUST(A(D), i)

r ← min{δin(D), ⌈n/2⌉}
comment: δin(D) is the minimum in-degree of D
s← n
for k ← 2 to n− 1

for each K′
i ∈ K′

k (i = 1, 2, . . . ,
(
n−1
k

)
)

comment:K′
k is the set of

(
n−1
k

)
unique k-subsets of V \ {i}

for each P ′
j ∈ P ′

Ki
(j = 1, 2, . . . , 2k−1 − 1)

comment: P ′
Ki

is the set of partitions of K′
i with exactly

two nonempty parts

comment: P ′
j = {S1,S2}

isRSRobust← ROBUSTHOLDS(A(D),S1,S2, r, s)
if (isRSRobust == false ) and (s > 0)

then s← s− 1
while (isRSRobust == false ) and (r > 0)

do



while (isRSRobust == false ) and (s > 0)

do


isRSRobust←

ROBUSTHOLDS(A(D),S1,S2, r, s)
if not isRSRobust

then s← s− 1
if (isRSRobust == false )

then
{
r ← r − 1
s← n

if r == 0
then return (r, s)

return (r, s)

4. CONCLUSIONS
In this paper we have presented several algorithms for check-

ing and determining the robustness of a network. We present two
centralized algorithms, a decentralized algorithm, and a distributed
one. All algorithms are inefficient; they are O(m3

√
m) in the

size of the input. This is to be expected because the problem of
determining the robustness of a network is NP-hard [16]. In or-
der to improve on efficiency, one must consider approximate al-
gorithms. We are currently investigating polynomial-time approxi-
mations that provide conservative estimates of the robustness of the
network.
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