
Software and Attack Centric Integrated Threat Modeling for
Quantitative Risk Assessment

Bradley Potteiger
Vanderbilt University
2201 West End Ave
Nashville, TN 37235

bradley.d.potteiger@
vanderbilt.edu

Goncalo Martins
University of Denver

2199 S University Blvd
Denver, CO 80208

Goncalo.Martins@du.edu

Xenofon Koutsoukos
Vanderbilt University
2201 West End Ave
Nashville, TN 37235

Xenofon.Koutsoukos@
vanderbilt.edu

ABSTRACT
One step involved in the security engineering process is threat
modeling. Threat modeling involves understanding the com-
plexity of the system and identifying all of the possible threats,
regardless of whether or not they can be exploited. Proper
identification of threats and appropriate selection of counter-
measures reduces the ability of attackers to misuse the sys-
tem. This paper presents a quantitative, integrated threat
modeling approach that merges software and attack centric
threat modeling techniques. The threat model is composed
of a system model representing the physical and network
infrastructure layout, as well as a component model illus-
trating component specific threats. Component attack trees
allow for modeling specific component contained attack vec-
tors, while system attack graphs illustrate multi-component,
multi-step attack vectors across the system. The Common
Vulnerability Scoring System (CVSS) is leveraged to pro-
vide a standardized method of quantifying the low level vul-
nerabilities in the attack trees. As a case study, a railway
communication network is used, and the respective results
using a threat modeling software tool are presented.

Categories and Subject Descriptors
I.6.5 [Simulation and Model Checking]: Model Devel-
opment—modeling methodologies; K.6.m [Management of
Computing and Information Systems]: Miscellaneous—
Security

Keywords
Quantitative risk assessment, threat modeling, cyber-physical
systems

1. INTRODUCTION
Designing secure cyber-physical systems (CPS) is becom-

ing a major issue in many areas. It is widely accepted that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotSoS ’16, April 19-21, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4277-3/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2898375.2898390

designing secure CPS is a difficult problem. Moreover, secu-
rity has always been treated as an add on. An application is
assumed to be secure if it uses cryptography, security pro-
tocols, etc. While claiming that a system uses “Hash-based
message authentication code” or “128-bit keys” sounds effec-
tive, these statements mean very little when taken out of
context. The important question to ask is “Are the secu-
rity features of the system necessary, and do they meet the
system’s security needs?” [8].

Traditionally, security has been an art, relying on the
judgment of highly trained professionals to qualitatively as-
sess vulnerability states of systems. The largest benefit of
a qualitative approach is rapid implementation due to the
lack of necessity for large datasets and statistical analysis
since risk is determined by expert opinions and personal
experience. However, one problem is that since the risk as-
sessment is largely associated with personal experience, risk
models are subjective and are largely inconsistent among
organizations. Since an attacker only needs one chance to
succeed, this inconsistency could prove to be a significant
problem. With the introduction of a quantitative approach,
risk can be more objectively defined, leading to more consis-
tent risk assessment results. With the increased consistency,
the probability of organizations missing critical vulnerabili-
ties is decreased.

A challenge presented in the quantitative risk assessment
of CPS deals with developing security metrics and models
capable of analyzing a system in respect to a set of security
properties in a given context. This problem additionally
dives into the question of whether the scientific method and
“definitive measurement techniques” can be applied to the
area of security which has traditionally been a qualitative
field.

This paper attempts to make a step towards solving this
problem by providing a standardized, quantitative approach
to model the security of components as well as the system
as a whole by taking into account the inter-connectedness of
each component. This goal is accomplished through the use
of a two step composition approach. A high level system
model is developed illustrating the various components as
well as their interconnectedness to other components. Ad-
ditionally, for each component as well as the system as a
whole, attack trees are developed. Component attack trees
are associated with illustrating attack vectors that are con-
tained within the specific component domain, while system
attack graphs represent attack vectors that are created from
component vulnerability propagation. This paper further

99

considers the problem of quantifying model input to con-
firm that system security analysis can be as realistic and
effective as possible.

Threat modeling involves understanding the complexity
of the system and identifying all possible threats, regard-
less of whether or not they can be exploited. Identifying
threats helps develop realistic and meaningful security re-
quirements. Security requirements are then analyzed based
on their criticality and likelihood, and a decision is made
whether to mitigate the threat or accept the risk associated
with it. Proper identification of threats and appropriate se-
lection of countermeasures reduces the ability of attackers
to misuse the system. Threat modeling is implemented us-
ing one of three common approaches independently: Asset
centric, attacker centric, and software centric [13].

The security designer can start thinking about threats us-
ing each of these approaches. [13] supports the direction that
if there is a methodology that provides the ability to merge
these three approaches in a common modeling environment,
the number of discovered threats and vulnerabilities will be
maximized.

Securing systems is about tradeoffs; often finding the ideal
balance is a challenge. It is impossible to guarantee 100%
security. However, it is possible to work towards 100% ac-
ceptance. A good security system strikes a balance between
what is possible and what is acceptable through a risk man-
agement process. Risk management is comprised by risk as-
sessment, risk reduction, and risk acceptance [14]. Another
goal of the proposed approach is to include quantitative risk
assessment on the identified threats and respective coun-
termeasures. This enables the analysis of the suitability of
common requirements to the system. The security designer
will be able to visualize the impact of different mitigations
for the identified threats.

To provide a standardized method of modeling the proba-
bility of success for the risk assessment, the Common Vulner-
ability Scoring System (CVSS)1 can be incorporated. CVSS
provides the ability to have a formal rating system for at-
tacks. Currently, the usefulness of CVSS is a widely de-
bated topic in the metrics field due to the mysteriousness
surrounding the score calculation algorithms as well as the
possible score inconsistencies created from different judging
“experts.” However, due to its wide use and the assumption
that the standardized method will reduce the amount of in-
consistencies in the scoring process, we believe that CVSS
is useful for illustrating our modeling approach. It is impor-
tant to note that our work provides the flexibility to use any
quantitative scoring methodology so in the future different
metrics can be inserted in the place of CVSS.

A software research prototype is developed to illustrate
the proposed methodology. A domain specific modeling lan-
guage is developed for the system and attack models us-
ing the Generic Modeling Environment (GME) [5]. Addi-
tionally, the ADTool graph generation software suite [4] is
integrated to perform automated risk propagation on the
generated attack models in GME. Furthermore, this tool al-
lows for an automated method of observing changes in the
quantitative risk values in attack models based on the im-
plementation and redesign of attack models.

The contributions of this work include (1) integrating, in
a common modeling approach, software and attack centric

1https://nvd.nist.gov/cvss.cfm

threat modeling approaches, (2) including quantitative risk
assessment on the identified threats and respective counter-
measures, (3) including a standardized method to model the
probability of success for the risk assessment, and (4) provid-
ing a composition methodology for integrating system and
component models.

This paper focuses on presenting a threat modeling ap-
proach with a case study for illustration purposes. As a
part of the approach, the components and network layout
are first modeled in a system model, depicting the structural
design of the system. Then, qualitative attribute templates
are developed for each specific component and network con-
nection, while quantitative risk values are assigned to at-
tributes. Furthermore, component attack trees are created
through a combination of component attributes, illustrat-
ing attack vectors to compromising system components. Fi-
nally, component attributes are inserted into system attack
trees, conveying how individual component vulnerabilities
and mitigations effect the overall system security.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work. In Section 3 the problem
formulation and case study are presented. Section 4 de-
scribes the component modeling and risk assessment method-
ology. In Section 5, the system modeling and risk assessment
methodology is presented. Finally, the paper concludes with
a summary in Section 6.

2. RELATED WORK
Typically, threat modeling has been implemented using

one of three approaches independently, asset centric, at-
tacker centric, and software centric.

2.1 Asset Centric
Asset centric threat modeling encompasses a defense strat-

egy (blue team) in protecting the internal infrastructure of
a system. This approach is typically popular in information
technology and business applications where an ”asset” such
as health data, monetary funds, or personally identifiable
information needs to be protected from outside intruders,
similarly to the functionality of a bank vault in the physical
domain. In 2013, the SANS Institute developed a list of the
20 most impactful security measures relevant to network se-
curity after analyzing the most common offensive exploits.
This is very beneficial in that it focuses only on the most
practical ”proven to work” approaches in guiding companies
to better security [1]. However, one drawback of this ap-
proach is that it is constrained to the cyber domain, mainly
focusing on general network security information.

With the recent trend in Internet of Things (IOT) de-
vices, OWASP at Oxford University has conducted research
on IOT compromises to produce a list of the top 10 IOT
attack surfaces and mitigations in what is called the “Inter-
net of Things Top 10 List” [9]. This document goes one step
further than the critical security controls in providing paths
to execute an attack in addition to the mitigations that can
lead to system protection.

For providing a general modeling structure, NIST has de-
veloped a cyber security framework, allowing businesses to
customize their security measures in categories relating to
identifying threats, providing protective measures, detecting
intrusions, responding to infiltration, and recovering after an
attack [2]. This framework encompasses a wide spectrum of
a compromise, not only providing security measures for pro-

100

tecting systems from intrusions, but also covering how to
recover from attacks to minimize damage.

2.2 Attacker Centric
In 1998, Phillips et al. developed an attack graph genera-

tion tool which relied on a collection of variables represent-
ing the state of a network and edges representing actions
between states [15]. The authors noted that exponential
state explosion becomes a problem as the number of states
increased. However, a search engine was developed to to
aid in analysis and a partial order reduction algorithm was
implemented to eliminate duplicate paths contributing to
explosion.

In 2003, Scheyner took this tool a step further in utilizing
model checking techniques to compute attack graphs [12].
The developed tool could be integrated with a vulnerability
scanner to conduct a real time analysis of a network. Simi-
lar to Phillips, Scheyner’s tool has problems with state space
exponential explosion resulting in a high simulation time for
large models. It can additionally be noted that both of the
tools developed by Phillips and Scheyner are heavily con-
strained to the network domain, not being easily extendable
to the cyber physical domain due to a significant reliance on
network vulnerability scanners.

In 2013, Kordy et al. developed a tool at the University of
Luxembourg called ADTool. ADTool uses a similar struc-
ture to the previous tools, except, it provides capabilities to
insert mitigation actions to counteract the attack process.
This allows for the defender role to be modeled in addition
to focusing on the attacker, resulting in a holistic overview
of a security game. Furthermore, both actions and mitiga-
tions can be assigned risk values, allowing for a quantitative
risk to be computed from the model.

2.3 Software Centric
Microsoft has developed the SDL threat modeling tool for

focusing on modeling software related system vulnerabili-
ties [7]. SDL focuses on using the STRIDE (Spoofing, Tam-
pering, Repudiation, Information Disclosure, Denial of Ser-
vice, Elevation of Privilege) methodology to analyze system
vulnerability to these different categories of attacks. Fur-
ther, if there is any vulnerability in a respective category
of STRIDE, recommended mitigations will be provided and
the model can be adjusted accordingly to reflect the changes.

DREAD (Damage Potential, Reproducibility, Exploitabil-
ity, Affected Users, Discoverability) is another threat mod-
eling methodology encompassing an acronym referring to
several threat assessment categories [10]. However, instead
of focusing on a boolean variable representing the vulnera-
bility of a category, DREAD uses a numerical approach in
assigning one of three values to the first four categories (0,
5, 10) and one of four values (0, 5, 9, 10) to the last cat-
egory. These assignments allow for an average value to be
calculated to represent the risk of the entire system.

Martins et al. developed a tool similar to SDL that mod-
els the software centric state of a system based on STRIDE
[6]. Instead of providing mitigation recommendations based
off of Microsoft’s security approach, NIST guidelines are uti-
lized. However, there still exists a problem in all three of the
above applications in that the individual attack processes
are not analyzed. By integrating attack processes, a more
detailed model could be developed illustrating recommenda-
tions based off of more specific circumstances.

2.4 Risk Management
NIST has developed the Common Vulnerability Scoring

System (CVSS) that provides the ability to have a formal
rating system for attacks [3][10]. This allows security re-
search to have a reliable, normalized representation of an
attack. With this data, the opportunity for quantitative
risk analysis is enhanced. However, some drawbacks noted
include not reducing the attack surface, high complexity
compared to the STRIDE and DREAD approaches, and re-
quiring a high overhead.

TRIKE is an open source threat modeling framework simi-
lar to the Microsoft methodologies of STRIDE and DREAD,
but focuses on a risk based approach. While STRIDE and
DREAD models consist of a representation of attacks, threats
and weaknesses, TRIKE focuses on the impact of system
stakeholders [11][10]. One benefit of this tool is the abil-
ity to integrate both software centric and attack centric ap-
proaches by autonomously generating attack graphs based
off of the requirements model and implementation model
input. However, it seems this modeling process is exten-
sive with several diagrams required to comprise the input
models.

Ucedavélez et al. has developed the PASTA (Process
for Attack Simulation and Threat Analysis) framework for
threat modeling in respect to addressing the most viable
threats to an application target [16]. This framework pro-
vides 7 layers for more detailed modeling capabilities than
traditional threat modeling tools. However, similar to TRIKE,
the framework modeling process seems to be extensive with
several layers of modeling required. This framework seems
appropriate to large corporations with a vast security de-
partment with thorough knowledge of system attributes.

3. PROBLEM FORMULATION
The problem that this paper addresses is that security is

heavily dependent on the qualitative judgment of system de-
signers. Additionally, it is hard to model component depen-
dencies so that the propagating impact of individual vulner-
abilities on the rest of the system behavior can be analyzed.
Furthermore, this problem is extended to include the chal-
lenge of composing a model such that the quantitative risk
metrics of components can be connected to illustrate risk
propagation and interdependent attacks in a system.

The objectives of this paper include developing a method-
ology aimed at modeling component quantitative risk through
the use of software and attack centric modeling approaches,
as well as connecting component threats together for the
purpose of composing system wide attack propagation mod-
els. From this standpoint, an important goal is to translate
component level composition to system level attack com-
position by developing an interface for applying component
specific risk to the rest of the system.

For the first objective, component attack trees are de-
veloped for the five threat categories of the software cen-
tric STRIDE methodology. These attack trees illustrate the
threat dependencies of the higher level STRIDE attack cate-
gories on the lower level component attributes. Additionally,
a goal is to introduce a formal, standardized method of as-
signing risk and mitigation values to the attributes included
in the component attack tree models. This is accomplished
by using the CVSS scoring methodology to assign risk values
to component attributes in the attack tree and executing a

101

risk propagation algorithm to recursively model the risk of
higher level STRIDE threat categories.

For the second objective, attack ports are generated for
individual components illustrating actions that can translate
risk to connected components. Attack ports are additionally
dependent on a combination of the component attack trees,
allowing STRIDE risk to transfer to connecting components.
With a generated system attack graph for a targeted compo-
nent, the composed attack paths in the graph represent a se-
ries of attack ports executed to reach the target. With each
attack port dependent on the risk of its respective STRIDE
attack category, component risk values can be propagated
throughout the graph to illustrate the effect on the target
component.

3.1 Case Study
A railway communication network is utilized as a case

study to illustrate the effectiveness of the modeling approach.
There are two different locations in the system: Cen-

tral operating stations and the field. The central operating
station is where the train operator remotely communicates
with various train switches and signals. This location is
modeled with operator, network switches and router com-
ponents. This infrastructure allows the main headquarters
of the train operating agency to communicate to the outside
field. The next location is the field, which consists of bases-
tations, railway signals and railway switches, along with a
repeater in the case of far distances away from the main
operating center. Basestations, railway signals and railway
switches can be connected wirelessly while the rest of the
components are connected through wired connections. How-
ever, there are some constraints to component interconnec-
tions. Railway signals and switches have to be connected
to a basestation, the basestation has to be connected to a
router or repeater, the operator has to be connected to a
network switch and a network switch has to be connected to
a router. The constraints and components are listed below.
Additionally, Table 1 defines commonly used symbols used
in the sections below.

Components =

operator
network switch

router
repeater

basestation
railway signal
railway switch

Connection Constraints
operator → networkswitch
networkswitch→ (router ∨ operator)
router → (repeater ∨ basestation)
repeater → (router ∨ basestation)
basestation→ (railwaysignal ∨ railwayswitch ∨ repeater)
(railwaysignal ∨ railwayswitch)→ basestation

In the following sections, the process of modeling com-
ponent threats with the goal of composing a system attack
propagation model is illustrated using the railway case study.
First, a component model is developed for a railway signal
(Rsignal) to illustrate the process of composing component
attack trees for each category of STRIDE. In this example
a Rsignal attack tree is developed for a tampering threat,
conveying the different attack vectors possible for the threat.
Additionally, the quantitative risk methodology is described

Symbol Description
SM System Model
CM Component Model
c Components
w Communication Channel
SAG System Attack Graph
CAT Component Attack Tree
s States
t transitions
sg Attacker Goal State
p Risk
AT Attribute Template
a Attribute
AP Attack Ports
dep Attack Port Dependencies
Table 1: System Model Symbols

by using the CVSS approach to assign risk values to the
Rsignal vulnerabilities in the tampering attack tree. Fur-
thermore, a risk propagation algorithm is implemented to
illustrate how the risk of lower level Rsignal vulnerabilities
effect the overall risk of a tampering attack occurring.

Finally, the process of translating component specific threats
to system wide attack paths is shown by looking at the Rsig-
nal tampering attack again. However, in this case, the risk of
a Rsignal attack is dependent on external component threats
in the connecting basestation, repeater, router, switch, and
operator components. By using specific STRIDE threats in
these components, attack paths are developed using a se-
ries of connecting attack ports to generate a system attack
graph. After completion, a comparison of the Rsignal tam-
pering attack risk is shown in respect to the internal com-
ponent risk defined in the component attack tree, versus
the external propagating risk defined in the system attack
graph. This allows for prioritizing strategies for implement-
ing mitigation measures.

4. COMPONENT RISK ASSESSMENT

4.1 Component Modeling
The component model is a tuple CM = (AT,CAT,AP)

where AT ⊆ vulnerabilities,mitigations is the set of at-
tribute templates describing the component, CAT repre-
sents the set of component attack trees illustrating the var-
ious attack vectors that can be utilized to compromise the
component and AP represents the set of attack ports con-
veying how component threats can propagate to external
components. An attribute template (AT ⊆ a) represents
various component descriptors (vulnerabilities and mitiga-
tions) that describe the security state of components in the
system. As such, every component in the system contains a
set of attribute templates as a part of its formal component
model.

Definition 1. Attribute Template
An attribute template is a generic property of the hardware
or software configuration of the system which includes but is
not limited to component vulnerabilities and mitigations.

Additionally, the assignment of a value to an attribute
template results in an attribute.

Definition 2. Attribute
An attribute is an assigned instance of an attribute template.

102

Figure 1: Railway Communication Network Case Study

It can either be assigned a true or false value, or a weighted
quantitative value.

The value p assigned to each attribute is associated with the
security risk. For this purpose, CVSS is utilized to provide
a standardized methodology of quantifying attribute risk.

The component model tuple contains a component attack
tree (CAT) representing various possible attack vectors. A
component attack tree is comprised of a tuple CAT = (s, sg, t, p).
A state s represents a threat or mitigation, while sg repre-
sents the high level threat category (STRIDE). A transition
t ⊆ s × s connects two states together in the tree. Finally,
p ∈ < represents risk probabilities assigned to initialize re-
spective attributes. The value of p can be quantified with
non negative real numbers to represent the risk level of vul-
nerabilities and mitigations.

Finally, the component model tuple contains a set of at-
tack ports (AP). Attack ports represent an instance of a
component attack that spreads risk to external components.
Each attack port contains dependencies (dep) of threat cat-
egories based on the attack tree classes.

Before generating component attack trees, it is important
to note that each component consists of 5 individual at-
tack trees correlating to the 5 separate threat categories of
STRIDE. As such, each component has a generated attack
tree representing a Spoofing, Tampering, Repudiation, In-
formation Disclosure, Denial of Service, and Escalation of
Privilege threat.

4.2 Component Attack Trees
For every component, a CAT is generated representing

each respective category of STRIDE (Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, El-
evation of Privilege). This allows generic software centric
principles to be applied more specifically to an application
domain. An example of a CAT is shown in Figure 2.

There are 4 different atomic objects that make up the at-
tack tree states in the modeling language. These are the root
node, intermediary node, leaf node, and mitigation node.
An attacker starts at a leaf node, and iterates through an
intermediary node path until it reaches the root node. At
this point an attack is considered successful. To model the
success of an attack, each leaf and mitigation node is as-
signed a value. Through “and” and “or” logic propagation,
these values are applied to iteratively calculate the parent
intermediary node probability of success until the root node
probability of success is calculated. In this modeling lan-
guage leaf nodes correspond to the entry exploit attributes’

likelihood of success, while the mitigations correspond to a
percentage value that reduces the probability of success of
a leaf node. The attack model has a set of nodes with spe-
cific connection constraints. In this situation, it is assumed
the directional connections occur starting from the leaf node
and propagate in an upwards direction to the root node.

AttackTreeNodes =

Leaf Node (Risk)

Mitigation Node (Risk Reduction)
Intermediary Node

Root Node

Connection Constraints
leaf → (mitigation ∨ intermediary ∨ root)
mitigation→ (intermediary ∨ root)
intermediary → root

The CAT in Figure 2 represents a Rsignal Tampering
attack. This attack tree consists of all 4 types of nodes:
Leaf (gold), mitigation (blue), intermediary (black) and root
(red). By iterating from the leaf nodes (Attribute Tem-
plates) to root nodes, different attack vectors of implement-
ing an tampering attack are illustrated. In this case, the
set of leaf and mitigation nodes are a subset of the Rsig-
nal attribute templates (AT). As such AT ⊆ {Power Drain,
Memory Access, Untrusted Code, Logs Access, Resource
Availability, Access Control} The possibility of a tamper-
ing attack on a Rsignal is directly dependent on the system
becoming corrupt, the call chain and logs access. Looking
further, one of the nodes that corruption is dependent on is
power drain. When analyzing the CAT with non-nullified
mitigations, if a high risk value exists for a power drain ex-
ploit, it propagates upwards and increases the total chance
of a tampering attack on the Rsignal. However, this vulner-
ability can be mitigated with resource availability measures
(NIST guidline SC-6 [6]). When the resource availability
measures are in place, the probability of success of a power
drain exploit is very low resulting in the risk becoming low.
Then, this value causes a decrease in the corruption state at-
tack category and propagates through to decrease the tam-
pering attack category as a whole. As an example, let the
risk reduction value of the resource availability mitigation
be 25%. That means that the updated risk value of a power
drain exploit is now 75% of the original risk value or 25%
less.

4.3 CVSS Scoring
The common vulnerability scoring system is used to pro-

vide a standardized method of modeling the risk value of

103

Figure 2: Rsignal Tampering Component Attack Tree

Rsignal Tampering Risk Parameters

Category
Entry

Vulnerability
Risk Mitigation

Risk
Reduction

Corrupt State Power Drain 8 Resource Availabilty 25%
Memory Access 4

Call Chain Untrusted Code 2
Miscellaneous Logs Access 6 Access Control 50%

Table 2: RSignal Tampering Risk and Mitigation Parame-
ters

leaf nodes (vulnerability attributes) in attack trees [3]. In
this system there are three types of categories representing
a base score, temporal score, and environmental score. The
base score represents the intrinsic characteristics of a vulner-
ability that are constant over time and across user environ-
ments. This metric includes two sub-metrics: exploitabil-
ity, and impact. These subgroups represent characteristics
of the vulnerable components as well as reflect the magni-
tude of the consequences of the action. The temporal metric
group reflects the characteristics of a vulnerability that may
change over time but not across user environments. This
score reflects whether there are any available patches, or if
an exploit is easy to implement. Finally, the environmental
metric group represents the characteristics of a vulnerability
that are relevant and unique to a particular user’s environ-
ment [3]. After each metric is assigned a value, the base
score, temporal score and environmental score are calculated
and averaged to get a total score within a range of 0 to 10.

From the generated quantitative score, a qualitative cat-
egory can also be associated. For example, a score of 0 to 4
represents a low rating, 4 to 7 represents medium and 7 to
10 represents high.

To illustrate the process of calculating a CVSS score, the
logs access vulnerability is used from the table of Rsignal
tampering vulnerabilities in Table 2. The CVSS score is
calculated from an average of the base score, temporal score
and environmental score. The base score for logs access in-
cludes a network attack vector, low attack complexity and
high integrity and availability impact, resulting in a score
of 6.4 out of 10. The temporal score is represented as the
logs access vulnerability having an unproven exploit matu-
rity, temporary fix for the remediation level and a reason-
able report confidence, resulting in a score of 5.4 out of 10.
Lastly, the environmental score includes a low confidential-

ity requirement, high integrity and availability requirement,
a network modified attack vector and a high modified attack
complexity. This score calculates to 6.4 out of 10. By aver-
aging these three scores together, the total score is 6.06 out
of 10, rounding to the nearest integer score of 6 (logs access
p risk assignment). This methodology is used to calculate
scores for the rest of the vulnerabilities in Figure 2.

4.4 Risk Propagation
The attack tree structure is initialized with leaf node at-

tribute values while the intermediary and root nodes start
as uninitialized. As such, the parent node risk value can
be calculated based off of a series of logical equations tak-
ing into account whether the children nodes have “and” or
“or” relations as well as whether the children attributes are
mitigations or vulnerabilities.

Taking into account the risk and mitigation values of nodes,
the risk value for a parent is calculated by the equations be-
low.

For “or” relation of two leaf nodes x, y
p = x ∪ y = x + y − xy
For “and” relation of two leaf nodes x, y
p = x ∩ y = xy
For parent p with mitigation percentage m from 0 to 1
newp = p ∗ (1−m)

As an example with two child nodes with an “or” relation,
if one child node (x) has a CVSS score of 5 out of 10, while
the second child (y) has a score of 4 out of 10, the parent
node will have a risk score of p = (.5 + .4− (.5) ∗ (.4)) = .7

By recursively applying these equations starting at the
bottom leaf nodes and working up through the tree struc-
ture, the root node risk is calculated conveying the proba-
bility and impact of an attack occurring.

4.5 Risk Assessment and Mitigations
After risk propagation, the modeler is able to identify the

overall risk for individual components based on a CVSS vul-
nerability score for each respective STRIDE component at-
tack tree. If the score is above 7, the attack can be classified
as being probable to occur and having a large impact on
the system. By iterating through the model, the modeler
is able to identify the specific components as well as their
corresponding attacks that have a high associated risk value.

104

By analyzing the attack tree, the specific vulnerabilities con-
tributing to the attack risk can be identified. This allows the
modeler to look deeper in the system model and determine
not just that there is a high risk but what specific compo-
nent vulnerabilities and attacks are contributing the most to
this risk. By comparing the risk between active and inactive
mitigation scenarios, the modeler can prioritize vulnerabili-
ties to patch as well as look at the most effective mitigation
measures.

Risk is defined as the probability of success of an attack.
In the case of the attack tree model, the root node, inter-
mediary node and leaf nodes all have risk. In the modeling
framework, the user assigns probability of success values to
each individual leaf node of a CAT, allowing for individual-
ity of different component models. For example, one type
of component may be more vulnerable than others in re-
spect to a set of exploits. In this case, the component leaf
nodes have an increased risk value symbolizing that there is
a greater chance of an attack.

With a high risk value in a component attack tree, mitiga-
tions can be put in place. These mitigations are represented
as a percentage decrease in the overall risk of a child leaf
node. Mitigations represent patching a problem, lowering
the probability of an attack and consequently the risk to
the system. If a high risk value exists for a specific exploit
attribute, the risk propagates upwards and increase the to-
tal chance of an attack on the set of parent nodes. However,
if a mitigation is put in place for the vulnerability attribute,
the risk of that exploit is reduced consequently cascading
to the parent nodes above in the attack tree, resulting in a
lower overall attack tree risk value.

The security of an individual Rsignal component is looked
at more specifically by modeling a tampering attack. This
attack consists of several leaf vulnerability attributes (Power
Drain, Memory Access, Untrusted Code, Logs Access), along
with corresponding mitigation attributes (resource availabil-
ity measures, access control). When analyzing the vulner-
abilities through the CVSS method, the vulnerabilities for
untrusted code and memory access are in the low to medium
range. Even though these attacks are common and easy to
occur, they are easily detectable and mitigated making them
not as effective as other vulnerabilities. Power draining and
accessing the logs of the system are rated as the highest risk
vulnerabilities. Power draining has a high risk because once
a successful attack occurs, the Rsignal loses availability and
no longer is able to perform critical functions. Therefore,
power is the most important resource on the Rsignal and
would be the most impactful to the component. Logs access
is also a fairly high risk vulnerability because it is fairly easy
for an attacker to implement without a great amount of sus-
picion to reverse engineer the Rsignal. This could result in
an attacker possibly gaining administrative access or intro-
ducing malware. The good news is there are mitigations that
can protect against these high risk vulnerabilities. For log
access, access control measures can be implemented and for
power drain, resource availability protection measures can
be implemented. These reduce the risk by 50% and 25%
respectively.

From Table 2, the vulnerability attribute with the highest
risk is when there is a power drain, inferring that the Rsig-
nal component has power restrictions. This vulnerability is
rated an 8 out of 10 conveying it is very probable to occur
and has a large impact on the system if implemented by an

attacker. However, a mitigation attribute is recommended
to “add resource availability.” After recalculating the CVSS
score with this mitigation taken into account, the risk is
reduced by 25% to approximately 6 out of 10. Addition-
ally, another mitigation attribute “access control” is recom-
mended to reduce the logs access vulnerability by 50%. The
CAT in Figure 3 illustrates the makeup of this component
attack.

Figure 3: Rsignal Tampering Attack Tree

Figure 4 illustrates the risk value of a Rsignal tampering
attack occurring as .78 meaning that the CVSS vulnerability
score is a 7.8 out of 10, lying in the high range.The leaf
nodes referring to logs access and power drain are rated as
.6 and .8 respectively. It is important to remember these
values correspond to the CVSS scores of the vulnerabilities,
meaning that logs access is rated a 6 out of 10 and power
drain is rated as a 8 out of 10. Thus, logs access is a medium
security threat while power drain is a high security threat.

Figure 4: Rsignal Tampering Attack Tree With No Mitiga-
tions

Finally, after activating the mitigations, the new overall
risk value of a tampering attack is .57 (5.7 CVSS Score),
downgrading by 27% from the non-mitigation score to a
medium threat range (Figure 5).

4.6 Attack Propagation
After risk assessment is conducted on the component at-

tack trees, attack ports need to be generated for the compo-
nent to start the process of conducting system risk assess-
ment. Attack ports represent attacker actions that spread
risk between components. It is important to remember that
each instance of an attack is dependent on the threat levels
in a component. As such, each attack port is dependent on
the five threat categories of STRIDE (Spoofing, Tampering,

105

Figure 5: Rsignal Tampering Attack Tree with Mitigations

Attack Ports
Name Dependencies
Disrupt BS1 Communications BS1 DOS, BS1 EOP
Rswitch1 Integrity Attack Rswitch Spoof
Repeater Integrity Attack Repeater DOS,

Repeater Spoof
Router Relay None
Switch Relay None
Operator Send Malicious Packet Operator EOP

Table 3: Attack Port Examples

Repudiation, Information Disclosure, Denial of Service, Ele-
vation of Privilege). It is also the case that these threat cat-
egories serve as the root nodes of the five component attack
trees in the CAT. In this case, the attack port dependencies
are the root nodes in the CATs. Since risk propagation has
already taken place, the root nodes are already assigned a
risk score from 1-10. This means that if an attack port is
dependent on a CAT root node with a high risk score, that
attack port also has a high risk score and has a high prob-
ability of being executed. Furthermore, if the dependency
has a low risk score, that risk is translated resulting in the
corresponding attack port having a low magnitude of risk
translated to external components.

Table 3 provides a list of component attack ports for the
railway case study example. As noted above, each attack
port dependency is related to a CAT root node category,
providing the ability to correlate the risk score of the tree
root node. Additionally, it can be noted that there can
be multiple dependencies for an attack port, as well as no
dependencies. In this case, the attack port won’t be depen-
dent on the specific component attack trees, but could be
dependent on another connected attack port. Furthermore,
a component can have multiple attack ports and a single
CAT root node can be established as a dependency for more
than one attack port.

Looking at Table 3, let’s use “Disrupting BS1 Commu-
nications” as an example. In the right hand column, “BS1
DOS”, and “BS1 EOP” are assigned as dependencies. This
infers that the action of disrupting the basestation commu-
nications is correlated to whether there is a high risk for a
denial of service or elevation of privilege attack. In the case
of a denial of service threat, the basestation could either
not have enough resources to process the data to transmit
or the wireless transmitter could be jammed. Additionally,
in the case of an elevation of privilege threat, an attacker
could have root access and inject code that would prevent
the basestation from transmitting data. In either one of

these cases, the data communications transmitting from the
basestation becomes non-reliable increasing the chance of
malfunction in connected devices such as the railway signals
and switches.

5. SYSTEM RISK ASSESSMENT

5.1 System Modeling
It is very common that successful attacks encompass mul-

tiple steps ranging over various different portions of the sys-
tem. The attacker target may not be possible to infiltrate
directly. However, especially in cases where only peripheral
defenses exist, the target may trust various internal compo-
nents in the network assuming that the other respective com-
ponents are not malicious. Therefore, if an attacker can gain
entry into another more vulnerable component in the net-
work, it could be possible to compromise the target through
that trust link. It is important to not only model individual
component vulnerabilities but also develop a threat model
for the system as a whole, linking respective component de-
pendencies together.

The system model can be considered a tuple SM = (c, w, SAG)
where c is a set of components, w ⊆ c× c is a set communi-
cation channels representing transition connections between
components, and SAG is a set of system attack graphs.

The system attack graph SAG is included in the system
model to illustrate possible multi-component attack vectors.
The system attack graph is modeled by a tuple SAG =
(s, sg, t, p) where s represents states, sg ⊆ s represents a
goal state, t ⊆ s×s represents transitions between states and
p ∈ < represents the risk values assigned to each state. Even
though the system attack graph is similar to the CAT, the
composition style is different. In a tree structure, the com-
ponent threat category is organized in a hierarchical com-
position with the root level consisting of the highest level,
while the lower leaf level consists of the specific vulnerability
makeup. However, in a graph, the composition is organized
based on paths, where the root level corresponds to the tar-
get state and the children levels represent specific paths to
get to that target state.

5.2 System Attack Graph
Similar to the component attack tree modeling process,

the System Attack Graph encompasses a root node, inter-
mediary nodes, and leaf nodes. The root node corresponds
to a target component STRIDE threat category, also rep-
resenting that component CAT root node. An intermedi-
ary node represents a component attack port illustrating
attacker actions throughout the system network that trans-
late risk between components. As mentioned earlier, these
attack ports are dependent on respective CAT root node risk
levels, leading to the STRIDE threat categories represented
by the CAT root nodes to be assigned as children leaf nodes
of the attack ports. One difference between the component
attack tree modeling process, and the SAG process is that
the connections between nodes represents a path to reach a
target instead of a hierarchical relationship.

When developing the SAG, the scoring assignment method-
ology is similar to the CAT process. For the leaf nodes in the
SAG, which are CAT root nodes, the score achieved from the
CAT risk propagation process is used. Therefore, the score
of the SAG leaf node should be the same as the CAT root
node for the respective component STRIDE threat category.

106

Figure 6: Railway System Attack Graph for Signal Tampering

Since the component attack ports don’t have assigned risk
scores, the intermediary nodes start as unassigned. Further-
more, the root node begins as unassigned. From this point,
the risk from the SAG is propagated to the intermediary
nodes until the root node has an assigned risk score. At
this time, the SAG score for the root node can be compared
to the relating CAT root node score to analyze whether the
biggest component threat is from an internal or system wide
propagation perspective. This allows the threat modeler to
choose mitigation measures to implement.

To illustrate an example SAG from the case study de-
scribed in Figure 1, the target threat analyzed is tampering
in the Rsignal1 component. This threat category is assigned
as the root node of the SAG. Additionally, for the purposes
of this example, it is assumed that the branches of Bases-
tation2, Basestation3, Basestation4, and Rsignal2 have no
effect on RSignal1. Therefore, they have no attack ports
assigned. However, Rsignal1, is still effected by the Bases-
tation 1, Rswitch1, Repeater, Router, and Operator com-
ponents. As such these components have generated attack
ports that present an effect on the SAG. These attack ports
are defined in Table 3.

When creating the System Attack Graph, the generation
algorithm starts with labeling the target threat category as
the root node. As such, Tamper Rsignal1 is defined as the
root node in this instance. The next step is to move to the
next connected components and determine if there are any
attack ports. In this case BS1 has an attack port named
Disrupt BS1 communications. This attack port is inserted
as a child intermediary node of the root node Tamper Rsig-
nal1. Then the algorithm looks for dependencies of the at-
tack port as well as other components that are connected
to BS1 with attack ports. Since two dependencies of dis-
rupting BS1 communications are BS1 Denial of Service and
Elevation of Privilege, these are assigned as child leaf nodes
with their respective risk scores of 5 and 6 generated from
their CATs. Since two more connected attack ports are a
Rswitch1 Integrity Attack and Repeater Integrity attack,
these are assigned as child intermediary nodes of disrupting
BS1 communications. This process is repeated until no more
new connected attack ports can be found and there are no
new current attack port dependencies. The SAG generation

algorithm is illustrated in Algorithm 1 and the final system
attack graph is in Figure 6. In Figure 6, the leaf nodes have
numbers in brackets next to them. This means that each
of the numbers correspond to the risk scores of the respec-
tive CAT root nodes. On the other hand, the intermediary
nodes have scores in parenthesis. This means that these
node scores are a result of risk propagation from children
nodes and do not have their own CAT models. Finally, the
root node has a score in parenthesis indicating that it was
calculated by risk propagation instead of taken from the as-
sociated CAT model. This however, allows the modeler to
compare the risk score calculated from the SAG model with
the CAT score. By comparing the two values, the modeler
is able to prioritize mitigation efforts to reduce risk.

Algorithm 1 SAG Generation Algorithm

1: Initialization: Pick a Target CAT Root Node
2: setSAGRoot(CAT Root)
3: Repeat for connectedAttackPort
4: setIntermediaryChild(connectedAttackPort)
5: generateChildNodes(connectedAttackPort)
6: End Repeat
7:
8: generateChildNodes(Node)
9: foreach dependency

10: setLeafChild(dependency)
11: foreach connectedAttackPort
12: setIntermediaryChild(connectedAttackPort)
13: generateChildNodes(connectedAttackPort)
14: End generateChildNodes

5.3 Risk Assessment
After the SAG is generated, the risk score in the root node

can be compared to the CAT score. In Figure 6, the root
node in the SAG representing tampering the Rsignal1 com-
ponent has a risk of 9.6 out of 10, representing a very high
threat. Additionally, in Figure 4 the CAT root node risk
is rated a 7.8 out of 10 which is a high threat but not as
high as the SAG. Furthermore, when mitigations are imple-
mented in the CAT, the risk of a tampering attack decreases

107

to 5.7 out of 10, entering the medium severity range. Com-
paring the SAG value with the CAT values, the modeler can
identify that the component is more susceptible to external
propagating attacks than internal threats. With this knowl-
edge, the modeler is better equipped to localize the biggest
external threat source and implement the most effective mit-
igating measures. Additionally, if the CAT has a higher risk
value than the SAG, the modeler can conclude that the com-
ponent is more at risk from an internal standpoint. There-
fore, a mitigation should be implemented that deals with
the internal security of the component such as implement-
ing access control. By comparing internal versus external
component risk, the modeler is be able to implement more
effective mitigation measures for critical systems.

6. CONCLUSION
By integrating software centric and attack centric threat

modeling methodologies, security specialists are able to an-
alyze vulnerability risk as well as specific paths that lead
to compromise. By assigning a risk value to each attribute
in a CAT, a standardized, quantitative analysis of a system
component is made possible. With mitigations added to
CATs, models can be developed to analyze the effectiveness
of implemented security guidelines.

Additionally, by incorporating component risk in SATs,
an analysis can be conducted to illustrate the overall effect
that individual component vulnerabilities and mitigations
have on the rest of the system. The modeling framework in-
cludes the flexibility to connect external software packages
for the purpose of enhancing the visualization and analytical
experience for the modeler. By providing a systemic, quan-
titative method of modeling system risk, this paper serves as
one step towards providing a definitive, scientific approach
towards measuring the security of CPS systems.

Acknowledgments
This work is supported in part by the Air Force Research
Laboratory (FA 8750-14-2-0180), the National Science Foun-
dation (CNS-1238959), and by NIST (70NANB15H263). Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of AFRL, NSF, NIST.

7. REFERENCES
[1] Critical security controls. SANS Institute.

[2] Preliminary cybersecurity framework. nist, october 29,
2013. Cybersecurity, Improving Critical Infrastructure.

[3] First. Common vulnerability scoring system v3.0
specification document.

[4] B. Kordy, P. Kordy, S. Mauw, and P. Schweitzer.
Adtool: security analysis with attack–defense trees. In
Quantitative Evaluation of Systems, pages 173–176.
Springer, 2013.

[5] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai,
J. Garrett, C. Thomason, G. Nordstrom, J. Sprinkle,
and P. Volgyesi. The generic modeling environment. In
Workshop on Intelligent Signal Processing, Budapest,
Hungary, volume 17, page 1, 2001.

[6] G. Martins, S. Bhatia, X. Koutsoukos, K. Stouffer,
C. Tang, and R. Candell. Towards a systematic threat
modeling approach for cyber-physical systems. In
Resilience Week (RWS), 2015, pages 1–6. IEEE, 2015.

[7] C. Möckel and A. E. Abdallah. Threat modeling
approaches and tools for securing architectural designs
of an e-banking application. In Information Assurance
and Security (IAS), 2010 Sixth International
Conference on, pages 149–154. IEEE, 2010.

[8] S. Myagmar, A. J. Lee, and W. Yurcik. Threat
modeling as a basis for security requirements. In
Proceedings of the Symposium on Requirements
Engineering for Information Security (SREIS’05),
Paris, France, 2005.

[9] OWASP. Oxford iot top ten.
https://www.owasp.org/images/7/71/Internet\ of\
Things\ Top\ Ten\ 2014-OWASP.pdf, 2014.

[10] OWASP. Threat modeling. https://www.owasp.org/
index.php/Threat\ Risk\ Modeling, 2015.

[11] P. Saitta, B. Larcom, and M. Eddington. Trike v. 1
methodology document [draft]. URL:
http://dymaxion.
org/trike/Trike v1 Methodology Documentdraft. pdf,
2005.

[12] O. Sheyner and J. Wing. Tools for generating and
analyzing attack graphs. In Formal methods for
components and objects, pages 344–371. Springer,
2004.

[13] A. Shostack. Threat Modeling - Designing for Security.
Wiley, 2014.

[14] G. Stoneburner, A. Goguen, and A. Feringa. Risk
management guide for information technology
systems. Recommendations of the National Institute of
Standards and Technology (NIST), Special Publication
800-30, 2002.

[15] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian.
Computer-attack graph generation tool. In DARPA
Information Survivability Conference &
Exposition II, 2001. DISCEX’01. Proceedings,
volume 2, pages 307–321. IEEE, 2001.

[16] T. Ucedavélez and M. M. Morana. Intro to pasta. Risk
Centric Threat Modeling: Process for Attack
Simulation and Threat Analysis, pages 317–342.

108

