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Abstract—The rowhammer bug belongs to software-induced
hardware faults, and has been exploited to form a wide range
of powerful rowhammer attacks. Yet, how to effectively detect
such attacks remains a challenging problem. In this paper, we
propose a novel approach named RADAR (Rowhammer Attack
Detection via A Radio) that leverages certain electromagnetic
(EM) signals to detect rowhammer attacks. In particular, we
have found that there are recognizable hammering-correlated
sideband patterns in the spectrum of the DRAM clock signal. As
such patterns are inevitable physical side effects of hammering
the DRAM, they can “expose” any potential rowhammer attacks
including the extremely elusive ones hidden inside encrypted
and isolated environments like Intel SGX enclaves. However, the
patterns of interest may become unapparent due to the common
use of spread-spectrum clocking (SSC) in computer systems.
We propose a de-spreading method that can reassemble the
hammering-correlated sideband patterns scattered by SSC. Using
a common classification technique, we can achieve both effective
and robust detection-based defense against rowhammer attacks,
as evaluated on a RADAR prototype under various scenarios. In
addition, our RADAR does not impose any performance overhead
on the protected system. There has been little prior work that
uses physical side-channel information to perform rowhammer
defenses, and to the best of our knowledge, this is the first
investigation on leveraging EM side-channel information for this
purpose.

I. INTRODUCTION

As a fundamental requirement for implementing security
measures, memory protection prevents a process from modify-
ing memory it does not own. However, this essential protection
becomes at stake due to the discovery of a vulnerability,
known as the rowhammer bug [34], in the underlying dynamic
random-access memory (DRAM). The rowhammer bug be-
longs to the class of software-induced hardware faults, which
makes unauthorized data modifications possible.

The existence of the rowhammer bug has been reported
in numerous DRAM chips of DDR3 and DDR4 [34], [39].
Since its discovery, this hardware vulnerability has been
continuously exploited to form a wide range of powerful
rowhammer attacks. Examples of such attacks include sandbox
escaping [26], [49], [54], privilege escalation [8], [25], [26],
[54], [61], [64], cryptography subversion [7], [51], denial-
of-service [33], [42], [66], and even confidentiality breach-
ing [38]. Furthermore, rowhammer attacks have been effec-
tively demonstrated in the presence of ECC mechanism [16]
as well as in the context of only sending network packets [42],
[60].

In response, many defense techniques against rowhammer
attacks have been proposed in recent years, including sev-
eral detection-based approaches [4], [27], [30], [32], [46].
Unfortunately, as more sophisticated rowhammer attacks are
developed, the effectiveness of detection-based rowhammer
defenses becomes questionable. As demonstrated in [25], all
of the practical rowhammer attack detection approaches can
be circumvented. In particular, by abusing the Intel SGX tech-
nology and closed-page memory controller policy, rowhammer
attack detection based on either static analysis [32] or dynamic
monitoring [4], [27], [30], [46] will become ineffective.

In this paper, we introduce a new direction to addressing
the problem of rowhammer attack detection. Specifically, we
propose to leverage certain electromagnetic (EM) emanations
to effectively and robustly detect rowhammer attacks. EM side-
channel information is capable of revealing much knowledge
about the ongoing activity in a computing device, and it has
been extensively exploited to breach confidentiality [2], [3],
[18], [20]-[23], [31], [37], [50]. However, it has been realized
that, as a double-edged sword, such side-channel information
can also be used to help build security defenses [28], [45].
Following this line, for the first time, we utilize EM side-
channel information to our advantage for rowhammer attack
detection. Because EM emanations are inevitably issued dur-
ing any computation and can be hardly suppressed by outside
adversaries, our proposed approach can detect any potential
rowhammer attacks including the extremely elusive ones that
are hidden inside attacker-controlled SGX enclaves. Moreover,
our detection approach does not degrade the performance or
resource utilization of the system under protection.

The main contributions of this paper are as follows:

o We study the correlation between certain EM emanations
and rowhammer attacks, based on which we propose a
systematic rowhammer attack detection approach named
RADAR (Rowhammer Attack Detection via A Radio).

« We propose the first approach to reversing the scattering
effect of spread-spectrum clocking on EM side-channel
information issued from high-frequency clocks in a com-
puting device.

o We have implemented a RADAR prototype using a $299
software-defined radio device, and we evaluate the ef-
fectiveness and robustness of our EM-based rowhammer
attack detection under different scenarios.

There has been little prior work that uses physical side-channel



information to perform rowhammer defenses, and to the best
of our knowledge, this is the first investigation on leveraging
EM side-channel information for this purpose.

The rest of this paper is organized as follows: Section II
briefly sets the background; Section III formulates the threat
model; Section IV presents a new direction to rowhammer
attack detection; Section V studies the correlation between EM
side-channel information and rowhammer attacks; Section VI
proposes our RADAR system, which can achieve rowhammer
attack detection in a non-intrusive manner; Section VII eval-
uates the proposed RADAR system; Section VIII gives the
related work; and Section IX concludes this paper.

II. BACKGROUND

In this section, we provide some background information
on DRAM organization, the rowhammer bug, and rowhammer
attacks. Moreover, we briefly present the physical side effects
leveraged in this paper, namely the EM emanations.

A. DRAM Organization

Modern computing devices use DRAM as the main memory.
For better memory bandwidth, DRAM is often partitioned
into multiple channels. Each channel may be associated with
multiple dual in-line memory modules (DIMMs). Each DIMM
has one or more ranks (e.g., modern DIMMs can be single-
/dual-/quad-/octal-rank), and each rank has multiple banks
(e.g., normally there are 8 banks for DDR3 and 16 banks for
DDR4). As depicted in Fig. 1, each bank can be viewed as
a two-dimensional array of memory words, organized in rows
and columns. The size of the memory word depends on the
data bus width, and decides how many cells are needed to store
its content (e.g., 64 cells are needed to store a 64-bit memory
word). Each cell consists of a capacitor and a transistor, where
the capacitor is either charged or uncharged to represent a
binary value!, and the transistor is used to access the capacitor.
In each bank, there is also a row buffer, which can hold the
contents of a single row. To access a cell, the corresponding
row has to be activated first to put the contents of the row
into the row buffer, and then the access is served from the row
buffer. An activated row remains in the row buffer until being
closed by the memory controller, and before then, consecutive
accesses to that row will be served directly from the row buffer.
Depending on what memory controller policy is being used,
an active row can be closed due to different reasons: If the
memory controller uses an open-page policy, the active row
will not be closed until a different row in the same bank is
accessed; and such a causal event is often called a row conflict.
On the other hand, if a closed-page policy is employed, the
memory controller will proactively close the row [25], [42].

Note that a DRAM cell can only keep its charged state for a
short period of time, as its capacitor leaks its charge over time.
In order to prevent any data loss, the cells must be refreshed
regularly. DDR3 and DDR4 specifications require that the

'Depending on the implementation, some cells use the charged state to
represent ‘1°, while other cells use the charged state to represent ‘0’.
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Fig. 1. A representative DRAM architecture (two channels and four dual-rank
DIMMs). A rank consists of all the chips on the same side (front or back) of
a DIMM.

refresh interval must not be longer than 64ms. Normally, the
refresh interval is between 32ms to 64ms.

B. The Rowhammer Bug and Hammering

As DRAM becomes denser, the capacitor in a cell becomes
smaller and the voltage margin separating ‘0’ and ‘1’ be-
comes lower, which unfortunately have reduced the overall
DRAM reliability [44]. First thoroughly studied in [34], the
rowhammer bug has become a well-known DRAM reliability
issue: When a DRAM row is repeatedly activated and closed
(namely, the row is hammered) enough times within a refresh
interval, one or more bits in its physically adjacent rows can be
flipped to the opposite value?. Usually, a row that is hammered
is referred to as an aggressor row, and a row that has flipped
bits is called a victim row.

Row Buffer Row Buffer Row Buffer
(A) (B) (©)

Fig. 2. Three possible hammering techniques in the literature: (A) single-
sided hammering [34]; (B) double-sided hammering [54]; and (C) one-location
hammering [25].

Since many of the memory controllers use an open-page
policy, to trigger the rowhammer bug on such systems, two
aggressor rows in the same bank need to be alternately
activated. Consequently, the row buffer of that bank will
alternately hold the contents of these two aggressor rows. If the
two aggressor rows are not intentionally chosen to “sandwich”
a row, it is termed as single-sided hammering, as shown in
Fig. 2 (A). On the other hand, if the two aggressor rows are
selected to specifically lie on both sides of another row, it
is called double-sided hammering, as shown in Fig. 2 (B).
As demonstrated in practice, double-sided hammering is much
more effective and efficient than single-sided hammering [54].

2The large current coupled with toggling the activation of a row repeatedly
and rapidly accelerates the discharge rate of cells in the physically adjacent
rows. Before the next refresh, if too much charge in a cell has been leaked,
the stored bit information will be lost, namely the bit is flipped from 1 to 0
or from 0 to 1, depending on whether 1 or O is represented by the charged
state.



Some new memory controllers may use a closed-page (or
hybrid) policy, and in such cases even one aggressor row is
sufficient to induce bit flips around the row, which is called
one-location hammering [25], as shown in Fig. 2 (C).

C. Rowhammer Attacks

Because the rowhammer bug allows one to modify the
contents of a DRAM row without explicit permission, severe
security risks are posed. Since the discovery of this devastating
hardware vulnerability, many powerful attack vectors have
been developed by exploiting the rowhammer bug to compro-
mise the security defenses of a system. Usually, a rowhammer
attack consists of three basic phases:

1) Exploration phase. In the first phase, the attacker inten-
sively hammers the DRAM and searches for exploitable
bit flips. The prerequisite for performing this phase is to
design approaches used to trigger the rowhammer bug
on the targeted system. More details will be described
below.

2) Manipulation phase. In the second phase, the at-
tacker steers the targeted security-critical data to the
vulnerable memory location that has the exploitable
bit flips found in the first phase. There are several
approaches developed for this specific task, including
memory spraying [54], memory grooming [61], memory
waylaying [25], and memory ambush [13].

3) Exploitation phase. Once the security-critical data has
been placed at the vulnerable location, in the third phase,
the attacker triggers the rowhammer bug again to flip the
bit(s), which achieves the final compromise.

When designing an approach to triggering the rowhammer
bug on the targeted system, several technical challenges need
to be overcome. One challenge is the lack of address mapping
information, including both virtual-to-physical and physical-
to-DRAM, which leads to some approaches using inefficient
random testing [49], [54]. While memory deduplication can
be exploited to ease this challenge [8], attackers have tried to
recover such mapping information, especially by reverse en-
gineering the physical-to-DRAM address mapping [47], [59],
[64], for more efficient and effective double-sided hammering.
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Fig. 3. Different types of techniques for rapidly and repeatedly access the
same locations in DRAM.

The other challenge is how to access the underlying DRAM
quickly enough. To trigger the rowhammer bug, the same
location in DRAM has to be accessed rapidly; otherwise, even
if the DRAM were extremely vulnerable to hammering, one
would still not be able to exploit the bug for a successful
rowhammer attack. However, due to the presence of the
caches, most of the memory accesses to the same location can
hardly reach the DRAM. (This is why the rowhammer bug
is seldom triggered during the ordinary use of a computing
device, even though the underlying DRAM might be extremely
vulnerable.) Over the past few years, several techniques have
been developed to overcome this challenge (e.g., to circumvent
the effect of the caches). Fig. 3 shows a typical computing
platform, and each of the dashed lines in the figure represents
a possible path taken to enable fast access to the same location
in DRAM: (1) flushing or evicting CPU caches [1], [4], [26],
[34]; (2) bypassing CPU caches [49], [61]; (3) evicting GPU
caches [19]; and (4) maneuvering DMA buffers from I/O
devices [60].

D. EM Emanations

Because the electric current in the circuitry of a computing
device varies with time, EM emanations arise. As inevitable
physical side effects, EM emanations carry information about
the underlying electronic activities, which can be linked with
certain high-level activities such as which instructions or
loops are being executed. Thus, this information leakage
has been exploited to facilitate certain attacks, e.g., stealing
cryptographic keys [3], [21]-[23], or inferring privacy [18],
[37]. Yet, other than being exploited for side-channel attacks,
EM emanations have also been used to track code execution
for ensuring control-flow integrity [28], [45] or profiling [10],
[56].

The generated EM emanations are distributed widely on the
spectrum. Although the sources of many of these emanations
are unknown, a few of them are in fact easy to determine, e.g.,
the ones created by well-known periodic activities like clock-
ing and DRAM refreshing. The EM-emanated signals created
by these periodic activities are also strong and can propagate
far. Interestingly, some of these signals may be unintentionally
modulated by other activities in the form of amplitude mod-
ulation (AM) or frequency modulation (FM) [12], [48]. For
example, signals emanated from switching voltage regulators
may be AM-modulated by activities in the circuits they power,
and signals generated by periodic DRAM refreshes may be
AM-modulated by memory access activities [12]. Therefore,
these signals act as carrier signals that convey information
about the modulating activities.

III. THREAT MODEL

Assume an attacker has access to a system equipped with
DDR3 or DDR4 memory modules. The attacker attempts to
find out whether the DRAM of the system has the rowhammer
bug, and if so, the attacker also scans for exploitable bit flips
for a subsequent attack. Given the very low probability that
exploitable bit flips can be found in the first few trials, the



attacker needs to intensively hammer the DRAM for such
bit flips. In this paper, we assume that the attacker will
either utilize special instructions such as c1flush (namely
flushing the cache) or movnti (namely bypassing the cache),
or constantly evict the corresponding cache lines, to achieve
either double-sided, single-sided, or one-location hammering.
To circumvent simple detections, the attacker may manipulate
the system to run an SGX enclave, inside which the malicious
activities are performed.

In this paper, we mainly focus on computing platforms that
use DDR (instead of low-power DDR) and are seldom moved
on a daily basis, such as personal computers and workstations.
Although mobile/embedded systems are excluded, this actually
includes most of the currently vulnerable systems that have a
much wider rowhammer attack surface than mobile/embedded
systems and are harder to protect [19], [61], [62].

Another assumption is that the attacker is not able to
physically interfere with the EM emanations generated by the
system, e.g., she cannot place a high-power radio transmitter
nearby the target system and use it to jam the frequency band
of interest. Note, however, that this assumption does not limit
the applicability of our proposed method at all, due to the fact
that rowhammer attackers rarely need or have physical access
to the target systems.

IV. NEW DIRECTION TO ROWHAMMER DETECTION

Under the stated threat model, developing effective
detection-based defense techniques against the possible
rowhammer attacks remains an open research problem [13],
[25], [59]. In this section, we discuss why leveraging physical
side-channel information, EM emanations in particular, can
provide a feasible solution to this problem.

As we know, to effectively and robustly detect any type
of attacks, we need to discover and rely on information that
has a strong correlation with these attacks but can hardly be
tampered or concealed by any attacker-controllable running
program. Since physical side-channel information leaks much
fine-grained knowledge about system activities and can hardly
be corrupted by remote adversaries in reality, we can leverage
such information to help detect anomalies, including rowham-
mer attacks.

A variety of physical side effects are inevitably generated
during any activity of a computer system. For instance, power
is consumed, heat is issued, EM signals are radiated, and
even sound or light may be produced. Some of these side
effects may have strong correlations with the operations of
certain hardware components. As we can observe from Fig. 3,
the memory controller, memory bus, and DRAM modules are
the three hardware components that are always involved in a
rowhammer attack, no matter which technique is employed to
hammer the DRAM. Thus, we should primarily consider the
physical side-channel information that is strongly correlated
with the operations of these three hardware components. In
this paper, we argue that we can leverage EM side-channel
information for this purpose.

The rationale for leveraging EM side-channel information
to detect rowhammer attacks lies in the following facts:

« As mentioned in Section II, EM emanations are inevitable
physical side effects during any computation, issued both
intentionally and unintentionally [2], [12], [48], [65].

o EM emanations can be measured in a contactless manner
(e.g., via a radio device). This removes the need for un-
realistic hardware modifications to guarantee practicality.

o Compared to other physical side-channel information like
power consumption, EM emanations can provide more
fine-grained and niche-targeting insight into an activity.

e Most importantly, as illustrated in [11], [12], [48], [65],
rich information about memory activities can be found in
some EM emanations.

In the following, we will present our investigation on finding
information correlated with a potential rowhammer attack in
EM emanations. Additionally, we will describe our system de-
sign that uses simple and affordable measurements to achieve
an effective detection-based rowhammer attack defense. In the
course of our discussion, we will use EM emanations and EM-
emanated signals interchangeably.

V. FINDING HAMMERING INFORMATION IN EM
SIDE-CHANNEL EMANATIONS

As mentioned in Section II, rowhammer attacks need a
hammering process to tentatively trigger the rowhammer bug,
and then search for exploitable bit flips. The whole hammering
process consists of many hammering attempts, each of which
requires a large amount of toggling the activation of aggressor
row(s) within a short period of time. In the following discus-
sion, we will call such an activation toggling as a hammering
iteration. Therefore, there is a fast and nearly-regular switching
behavior in rowhammer attacks in nature. As a consequence,
when the three aforementioned hardware components (namely,
the memory controller, memory bus, and DRAM modules) are
stressed by hammering, the information about the hammering
activity is very likely carried by some EM-emanated signals
at certain frequencies.
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Fig. 4. The timing distributions of 10,000 hammering iterations in terms of
approaches using c1flush, movnti, and eviction.

Theoretically, such signals can be in any place of the EM
spectrum, but most likely, they should be correlated with the
frequency of the switching behavior. However, we do not
specifically know the switching frequency, because there can
be multiple approaches to triggering the rowhammer bug on



the same machine, each of which may have different computa-
tional overhead in its hammering iteration. Moreover, the time
consumed in each hammering iteration can hardly be identical,
which will result in a small range of switching frequencies in
the context of a single hammering attempt. For example, for
each of the three most commonly used approaches, which are
flushing the cache, bypassing the cache, and evicting the cache,
Fig. 4 shows the corresponding timing distribution of 10,000
hammering iterations. The timing measurements are performed
on a platform equipped with an Intel Haswell G3258 processor
and 8 GiB DDR3-1333 DRAM. In the rest of this paper, unless
stated otherwise, this is the platform used in the examples.

Nevertheless, the possible frequencies of this switching
behavior are bounded to some extent. Because the rowhammer
bug cannot be triggered if there are not enough times of
hammering iterations in between two refreshes, the frequency
has a lower bound. Obviously, the frequency must also have an
upper bound, because memory accesses cannot be arbitrarily
fast. (In effect, if the memory controller uses an open-page
policy, there exists an even tighter upper bound due to row
conflicts.)

A. Direct EM Emanations

Given the fast switching behavior in a hammering attempt
(e.g., the row buffer in a bank is repeatedly opened and closed
along with discharging and charging the aggressor rows), we
conjecture that there should be clear EM-emanated signals at
the possible switching frequencies. Therefore, we are tempted
to identify these signals directly.

However, there are some challenges and concerns in mea-
suring such direct EM emanations, even though their existence
is plausible: First, the switching periods are normally in the
range of one hundred to several hundreds of nanoseconds,
and therefore the corresponding frequencies are in a rather
low spectral range, where much noise exists due to radio
stations, appliances, and other sources. Second, these signals
may be very weak, and measuring such long wavelength weak
signals may require a physically large antenna or a special
antenna whose return loss is minimal around the frequencies
of interest.

In our experiments, we did not observe any EM-emanated
signal that is strongly correlated with the hammering switching
behavior in the frequency range of interest. Granted, we used
only a software-defined radio with a telescopic whip antenna
to try to capture such signals. Therefore, it may be possible
to find some signals of interest if using some lab-grade
instruments and carefully placing some customized EM probes
close to the chips. However, if such equipment is required,
the practicality of our detection approach will be decreased.
For our purposes, we need to leverage other possible EM
emanations containing hammering attempt information that
can also be easily measured.

B. AM-Modulated EM Emanations

As we know, many system modules like clocks and voltage
regulators intrinsically create EM-emanated periodic signals.

According to the study in [12], some of these periodic signals
will be AM-modulated by certain types of activities, and thus
information about the corresponding activities can be found in
those modulated signals. Moreover, such signals are relatively
strong and can propagate far, which lowers the requirements
for measuring them. Inspired by this study, we investigate
whether it is possible to find information about hammering
attempts in some of such AM-modulated signals. As an
educated guess, the hammering activity most likely modulates
some periodic carrier signals generated in the aforementioned
three hardware components.

As illustrated in [12], the strength of the EM emanations
generated by the DRAM clock varies when the amount of
activities driven by the clock changes, namely the emanations
at the DRAM clock frequency will be AM-modulated by the
DRAM activities. Therefore, our investigation will focus on
finding hammering attempt information in the AM-modulated
DRAM clock signals.

AM-modulation has a long history and is well understood.
We know that when a carrier signal is AM-modulated, there
are sidebands appearing on both sides of the carrier frequency
in the spectrum, and each sideband is a mirror-image of the
other relative to the carrier. These upper and lower sidebands
correspond to the spectrum of the modulating activity, namely
each modulating frequency will be present in each sideband.

Since nearly-regular and lasting switching behavior is asso-
ciated with a hammering attempt, if the DRAM clock signal
carries such hammering attempt information through AM-
modulation, we expect to identify that information via some
distinctive frequency patterns in the upper and lower sidebands
of the modulated DRAM clock signal. We have conducted a
large number of experiments that have verified the feasibility
of this idea. For instance, Fig. 5 shows the power spectra of
the DRAM clock signal measured using a software-defined
radio under six scenarios: The first scenario (A) is the simplest
one, in which only the system background tasks are running.
The following two scenarios represent some common uses
of a computer system, which are (B) playing a video and
(C) browsing web pages. The last three scenarios are to
(single-sided) hammer the underlying DRAM by means of the
three most commonly used approaches: (D) using c1flush
instruction to flush the cache, (E) using non-temporal store
movnti instruction to bypass the cache, and (F) loading from
congruent addresses to evict the cache.

Given that DDR3-1333 memory modules are used in this ex-
ample, the DRAM clock frequency is around 666~668 MHz.
On our platform, it is at 667.85 MHz, which corresponds to the
tallest central spike in each spectrum of Fig. 5. Note that, to
avoid a cluttered discussion, we turned off the spread spectrum
clocking feature in the BIOS for now (the motherboard used
in this example is ASUS Z87-A), and the problem caused by
this feature as well as our solution will be discussed later.

From Fig. 5, we can observe distinguishable sideband
patterns in the spectra when the underlying DRAM is being
hammered, namely there are noticeable “bumps” located on
both left and right sides of the central spike, which are circled
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Fig. 5. The power spectra under six scenarios. Note that the vertical axis is on a logarithmic dB scale. Each spectrum is derived by averaging 78 FFTs of
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and pointed to by arrows in Fig. 5 (D), (E), and (F). By
referring to Fig. 4, we can actually find the relation between
the times spent in hammering iterations and the frequencies
where the sideband patterns of interest are located. Take
the approach using movnti for an example. From Fig. 4,
we can see the dominant period of hammering iterations is
around 156 ns. As shown in Fig. 5 (E), the circled lower
sideband patterns are at about 661.4 MHz (i.e., 667.85 MHz -
1000/156 MHz), and the circled upper ones are at about 674.3
MHz (i.e., 667.85 MHz + 1000/156 MHz). These hammering-
correlated sideband patterns conform to the effect of AM-
modulation, which illustrates that we can find hammering
attempt information in the modulated DRAM clock signal.
Furthermore, we can notice that the “bumps” in Fig. 5 (D) and
(F) are slightly wider than that in Fig. 5 (E). This is because
the timing variances when using c1flush and eviction are
larger than that when using movnti, as shown in Fig. 4.

Note that, since multimedia like videos is non-temporal data
(namely data needed in the near future is not in the cache),
there is a large number of DRAM accesses in the scenario
(B). However, as shown in Fig. 5 (B), no obvious patterns of
interest arise. Thus, it indicates that the presence of massive
cache misses or DRAM accesses is only a necessary but not
a sufficient condition for generating hammering-correlated
sideband patterns. Normally, it is rare that a benign program
generates high rate and periodic cache misses for more than

30 ms.

Furthermore, we can still observe these sideband patterns
even after introducing some disturbance into the periodic be-
havior of a hammering attempt. (In such a case, the variance of
hammering period is increased, so the “bumps” become wider
and lower.) In other words, it is hard to conceal such patterns
while maintaining sufficiently fast toggling rate of aggressor
rows to trigger the rowhammer bug. In Section VII-D, we
will illustrate some of the experimental results related to this
random delay addition.

C. Spread-Spectrum Clocking

One major difficulty in robustly detecting hammering-
correlated sideband patterns is created by spread spectrum
clocking (SSC), which has been commonly used in electronic
products like computer systems for meeting electromagnetic
compatibility (EMC) regulations. EMC standards impose al-
lowable limits on the EM-emanated signal energy at any
frequency above 30 MHz, and many high-frequency clock
signals in a computer system (e.g., the DRAM clock) are
strong enough to violate such legal limits. To achieve EMC,
SSC uses FM-modulation to vary the clock frequency over a
range so that the time spent by the clock signal at a particular
frequency is reduced and the energy is spread over that range
of frequencies [29].

Under the situation in which the underlying DRAM is being
hammered, Fig. 6 (A) demonstrates the problem when SSC is
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turned on (which is the default option in most BIOSes). As
we can observe in the spectrum, instead of a single spike at
667.85 MHz, the clock frequency now ranges from 664.85
MHz to 667.85 MHz as a consequence of SSC. Compared
with the SSC-off clock signal power, when SSC is turned on,
the signal power is indeed significantly reduced (more than 15
dB in the given example). However, we find that the frequency
patterns of interest to our rowhammer attack detection are also
attenuated due to SSC, such that the hammering-correlated
sideband patterns become unrecognizable.

To overcome this problem, we need to de-spread the energy
in the signal. The details of our de-spreading process will
be described in the next section. Here, our aim is to show
that hammering attempt information can be found in the
EM-emanated DRAM clock signal. Fig. 6 (B) shows the
power spectrum of the measured signal after de-spreading.
Compared with Fig. 6 (A) which shows the spectrum of the
original signal without de-spreading, we can clearly notice that
the sideband patterns used for rowhammer attack detection
reappear. Therefore, we conclude that information correlated
with a potential rowhammer attack can be effectively found in
certain EM emanations.

VI. ROWHAMMER ATTACK DETECTION VIA A RADIO

In this section, we propose a rowhammer attack detection
system named RADAR (Rowhammer Attack Detection via A
Radio), which detects potential rowhammer attacks by iden-
tifying hammering-correlated sideband patterns in the AM-
modulated DRAM clock signal. The diagram of the proposed
RADAR system is depicted in Fig. 7. In the following, we
describe each component of our RADAR system.

i /Antenna Measurement i
I.________| RFReceiver %—-#
I I
i

System under watch nm— N .
Classification

Fig. 7. RADAR system illustration.

Detector

De-spreading ‘

A. Measurement Component

In the first step, we use a measurement device to capture
the EM-emanated DRAM clock signal. As the time spent in

each hammering iteration could be as low as one hundred
nanoseconds (e.g., when using one-location hammering on a
high-performance platform), to capture both upper and lower
hammering-correlated sideband patterns, the measurement de-
vice utilizing quadrature sampling should be able to support at
least 20 MHz instantaneous bandwidth. Moreover, the clock
frequency of interest may be as low as 400 MHz (e.g., DDR3-
800) or as high as 1600 MHz (e.g., DDR4-3200), and thus it is
more flexible to have a measurement device that can be tuned
to all of the possible frequencies. Fortunately, inexpensive and
reliable instruments exist. For simplicity and convenience, in
our prototype, we use a software-defined radio for this task.

Because a clock signal is a square wave, there is an infinite
number of harmonics in the frequency domain. Here we only
consider the first harmonic. If there is too much noise around
the fundamental frequency, we may try to rely on some higher-
order harmonics.

The antenna used in our system should match the frequency
range of interest. Given the possible DRAM clock frequencies,
there are many antenna choices. Through experiments, we find
that a cheap whip antenna (e.g., a telescopic one or just a piece
of wire) suffices. The antenna can be placed inside or outside
the case of the computer being monitored, but its position and
orientation may need to be fine-tuned for the best performance.

B. De-Spreading Component

As aforementioned, to robustly detect hammering-correlated
sideband patterns, we need to counter the effect of SSC by
de-spreading the energy in the measured clock signal. Given a
clock signal whose frequency is f., SSC uses FM-modulation
to vary the clock frequency in accordance with a signal f,, ()
that is generated in the SSC hardware chip but undocumented.
At time ¢, the instantaneous frequency f;(t) of the clock signal
becomes:

fi(t):fc+Kfm(t) ) (1)

where K is some proportionality constant. In an analytic form,
the effect of SSC is equivalent to multiplying the clock signal
by a complex exponential function 6(t), which is defined as:

e(t) _ ej27r fot K fm (t)dt , (2)

where j denotes y/—1. If the DRAM is hammered when SSC
is on, by reason of AM-modulation, the frequency patterns of



interest in the sidebands are also shifted by K f,,(¢) at time
t. Hence, for the purpose of de-spreading, we just need to
estimate #(t) and multiply the measured signal by 6=1(¢).
Although the exact mathematical expression of f,,(t) is not
available, since we deal with sampled values in the system, as
far as we are concerned, only the discrete values of §(¢) at the
points of sampling are needed for de-spreading. We leverage
quadrature sampling to measure the SSC-affected clock signal
which also centers its spectrum at zero Hz. Let vy, denote the
kth sample corresponding to the clock signal at a specific time
T, namely
v, = |okle??" 3)

where |vg| is the magnitude of vy and ¢y is the phase angle
of vg. Using FM-demodulation, we can acquire:
dy,

e 21K frn(T) €]

Therefore, at time 7, the instantaneous value of §(¢) is derived:

(1) = eI2m fo Kfm()dt _ i(¢k+0) _ itk o0 NG

where © is a constant phase angle. Although we do not know
the exact value of ©, we may simply assume it is 0, because a
non-zero constant phase angle only shifts the signal in the time
domain by a constant but does not affect our analysis in the
frequency domain at all. Thus, we can simplify Eq. 5 to have
it rely on only the values acquired by quadrature sampling:

(1) = —*
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Fig. 8. The phase difference ¢, — ¢i_1 between successive samples, where
1 < k£ < 10,000. Many of the apparent spikes above O are actually caused
by phase wrapping, i.e., any negative difference in the range of —m > A¢ >
—27 will be converted to an angle in the range of 0 < A¢ < .

To de-spread each sampled value of the SSC-affected signal,
the need for deriving the value of 6(t) at that point in time is
not desirable, since it is better to derive such values when the
amount of DRAM activities is little for less noise. Fortunately,
it is known that f,,,(¢) is a periodic function [29], namely we
have fp,(t) = fim(t + Ton) where Ty, is the period of f,,(t).
Therefore, even though the sequence of the discrete 6(t) values
may not be periodic?, its phase difference sequence, which is
equivalent to FM-demodulation, must be periodic over 7,,,. In
other words, given a sampling frequency fs, we have:

Gk — Q1 = ¢y — P, where L =k + [T | (7)

For example, in terms of the platform used in Section V, Fig. 8
shows the phase difference sequence of 10,000 values of 6(t)

3If the integration of K f, (t) over Ty, is an integer, 6(t) is periodic over
T If it is not an integer but a rational value, 6(¢) is still periodic. If the
integration is an irrational value, 6(t) is aperiodic.

over 0.4 ms (i.e., the sampling frequency is 25 MHz). Due to
random noises, we can observe singular jumps, although the
periodicity is obvious. By averaging the corresponding values,
we can effectively remove the noise.

Let A[0... N—1] denote the phase difference sequence over
aT,,, where N = |T,, fs]. Note that we only need to derive A
once for each hardware platform, as it is software-independent.
When sampling the clock signal for A derivation, we do not
have user processes running on the target system, and we also
use a bandpass filter to attenuate frequencies outside the range
of possible clock frequencies. The sampling frequency should
be the same as the one used during detection.

To use A for de-spreading during detection, we first need to
achieve A alignment, which is to find a point p in the stream
S of the sampled values such that the phase of 6(t) varies by
A[0] between S[p + 1] and S[p], by A[l] between S[p + 2]
and S[p + 1], and so forth. It is straightforward to see that A
alignment is periodic, namely if S[p] aligns with A, S[p+kN]
will also align with A. (Because it is very likely that T;, fs is
not an integer, strictly speaking, A alignment is quasiperiodic.)
Our solution to this problem is based on the fact that a correct
alignment leads to the maximum cross-correlation between the
entries of A and the phase changes of N successive sampled
values, which implies the maximum cross-correlation between
the sums of the first 1 < m < N entries of A and the phase
changes of the mth point relative to the first point. Therefore,
given a point g, we use the following equation to calculate the
cross-correlation:

Slg+m] m1

S -5 Al
p(q) _ l[g+m]| e | i=o

2| =
\MZ

Using Eq. 8, we can start at an arbitrary point ¢ and compute
p(qg+ k(N + 1)) in the (k + 1)st round, where k£ > 0, until
the cross-correlation reaches a spike, which signifies we have
found A alignment in that round. (Again, if T}, 5 is an integer,
we will need at most NV rounds to find A alignment. However,
it is very likely that T}, fs is not an integer, and we may need
more than N rounds.) As an example, Fig. 9 shows the cross-
correlation results in the first 800 rounds with respect to the
example given in Fig. 6, and we can clearly see that the initial
A alignment is found in the 266th round.
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Fig. 9. Using cross-correlation to achieve the initial A alignment.



After we have found the initial A alignment, say, S[p] aligns
with A, for each of the next ¢ > 1 values after S[p], we use
the following process to obtain the de-spread sequence D:

D[p + ’L] — S[p + i]e—ij+i ,
Ppti = Pp+i-1 + Al(i — 1) mod N] , and ¢, =0

where

€))

As the rounding error introduced by | T, fs | when T, f5 is not
an integer will slowly make the alignment drift away, we need
to periodically calibrate the alignment. Since the floor is taken,
the accumulated error will reach a point where S[p+ kN + 1]
aligns with A, instead of S[p+kN]. We solve this problem by
computing two cross-correlations p(p+kN) and p(p+kN+1)
together, where k£ > 0, on the fly in the de-spreading process,
and introduce a delay to A if p(p + kN + 1) is larger, which
means performing a right circular shift on A by one position,
namely, we derive and use a new A as follows:

1if p(p+ kN +1) > p(p+ kN) then
2 for j=0; j<N; j=73+1do
3 L Apew[(j + 1) mod N] = A[j];

Interestingly, de-spreading will inadvertently help reduce
background noise unrelated to the EM emanations of interest.
This effect is due to the fact that de-spreading will act like SSC
on such noise, whose energy will be scattered over a range of
frequencies. Because of this, the robustness of the proposed
system is increased, as later shown in Section VII-C.

C. Classification Component

Having the stream of samples that are processed according
to Eq. 9, we continuously perform FFTs to obtain a sequence
of spectra. Each spectrum is treated as a feature vector that is
fed into a classifier. Since the hammering-correlated sideband
patterns are relatively easy to recognize, it is not hard to train
an appropriate model to achieve accurate binary classification.
However, if we predict there is a potential rowhammer attack
as soon as certain hammering-correlated sideband patterns are
identified in a single spectrum, the false positive rate may be
high because similar patterns may transiently arise due to some
factors like noise.

Recall that a hammering attempt lasts for a period of time,
usually tens of milliseconds, which means that the hammering-
correlated sideband patterns are very likely present in each
spectrum derived within that period of time. On the other hand,
if some similar sideband patterns appear in a spectrum, but not
due to hammering, they may disappear in the next few spectra.
Therefore, we can rely on this temporal dependency to achieve
more accurate classification.

The sideband patterns of interest and temporal dependency
imply that vertical lines are probably in the spectrogram if
some hammering attempts are ongoing. For instance, Fig. 10
shows two spectrograms over 40 ms under two scenarios, and
we can clearly observe two vertical stripes in the spectrogram,
symmetric about the DRAM clock frequency (represented by
the central red stripe), when using c1flush to hammer the

(a) Playing a video

J[\
LRI
|
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Fig. 10. Spectrogram patterns of different activities.

DRAM. In contrast, no such vertical stripes appear in the
spectrogram corresponding to the video playing scenario.

Since such patterns are local and share the property of space
invariance, we decide to use convolutional neural network
(CNN) that can automatically extract these local features and
perform classification on the basis of them. The input to
CNN is a magnitude spectrogram that is a sequence of w
magnitude spectra. The output from CNN is the probability
of the input being in the hammering class after applying a
softmax function. We use a sliding window of size w, whose
stride is s to successively feed the inputs. Note that w and
s depend on several factors including sampling frequency,
computational capacity, and classification accuracy. The values
used in our RADAR prototype are described in Section VII-A.

We find that it is important to normalize the magnitude
of each point in the spectrogram prior to training and clas-
sification. For each point, we normalize its magnitude by
subtracting the mean and dividing by the standard deviation
of the magnitudes of all the points in that spectrogram (i.e.,
using instance normalization). Note that we simply set the
magnitudes of the points within +0.05 MHz of the clock
frequency to zero, namely, we zero out the central red stripes in
Fig. 10. The rationale behind this is twofold. First, the power
levels around the DRAM clock frequency totally dominate
(e.g., more than 20 or even 40 dB as shown in Fig. 5), which
can significantly affect the results of normalization. Second,
we do not lose any useful information for our detection
purpose, because the sideband patterns of interest induced by
actual hammering attempts will not fall in this range; otherwise
it will be too slow to trigger the rowhammer bug.

D. Discussion on the Use of Detection Information

When suspicious sideband patterns are recognized, the
detector will notify the system under watch that a rowhammer
attack may be ongoing. To this end, the detector should be
connected to the system through some standard communica-
tion interface like USB, and will send notification messages
when potential hammering attempts are detected.

Upon receiving such a message, we may try to prevent the
system from being compromised in a very simple fashion,
which is to terminate all of the untrusted processes or the
processes belonging to untrusted users. Although this approach
can promptly thwart potential rowhammer attacks, it is overly



conservative, since many non-malicious processes are also
terminated. Alternatively, we may leverage the scheduling
information to narrow down the list of suspicious processes
(e.g., we can select the untrusted processes that were scheduled
to run in the last 100 ms as suspicious ones).

As a matter of fact, it is very likely that tens of (or even
hundreds of) hammering attempts are needed before finding
some exploitable bit flips, especially if the underlying DRAM
modules are not overly vulnerable (e.g., the number of bit
flips is below a threshold during some test). In such scenarios,
we can try to pinpoint the malicious process by individually
scheduling each suspicious process to see which one can raise
the alarm again. Of course, if the system under watch is
very security-sensitive and/or the underlying DRAM is very
vulnerable, we may wish to terminate all of the untrusted
running processes as soon as a notification message from the
detector is received.

VII. EVALUATION

We have implemented a RADAR prototype to demonstrate
its practicality, and have evaluated it on four platforms that
are summarized in Tab. I. As stated in Section III, an attacker
has various choices of hammering techniques for rowhammer
attacks. We show that our approach can protect a system from
all these possible techniques. Before presenting the evaluation
results, we will first describe our prototype in more detail.

TABLE I
Platforms on which our prototype is evaluated.

Platform Motherboard CPU Memory
A Asus Z87-A Intel G3258 8 GiB Hynix DDR3-1333
B Dell OptiPlex 990 Intel i7-2600K 8 GiB Samsung DDR3-1333
[ Alienware Aurora R7 Intel i7-8700K 16 GiB Micron DDR4-2666
D Asus ROG Strix B350-F | AMD Ryzen 7 1800X | 32 GiB Samsung DDR4-2133

A. Prototype of RADAR

We use a software-defined radio, LimeSDR, to acquire the
EM-emanated DRAM clock signal data. The bandwidth we
need is 25 MHz, and LimeSDR can provide 61.44 MHz RF
bandwidth in the frequency range of 100 kHz — 3.8 GHz [41],
which is more than sufficient for our needs. A LimeSDR costs
$299. In fact, we need only an RF receiver instead of a full-
duplex SDR, and thus a customized device can even be much
cheaper. We simply use a 20 cm telescopic antenna or a self-
built one from two pieces of 7.5 cm wire that can be easily
placed inside a computer case. (Appendix B gives more details
on antennas as well as their placement.)

For rapid prototyping, we use a dedicated computer to serve
as the detector, on which the de-spreading and classification
components run. The de-spreading component is implemented
as a module of the GNU radio framework. The classification
component is implemented under the PyTorch framework and
integrated into the GNU radio using the C++ interface. (Note
that using a dedicated computer is only for proof-of-concept.
The whole detector can be implemented on an FPGA, which

will be our future work.) The detector is connected to the
system under watch via the USB interface*.

We train a 3-layer CNN model using the positive and nega-
tive examples collected from the four platforms listed in Tab. I.
Each platform contributes 5,000 positive examples as well as
5,000 negative ones. A standalone program is used to generate
positive examples, which randomly selects aggressor rows and
hammers 1/3 of them using c1flush, another 1/3 of them
using movnti, and the rest of them using eviction; and the
negative examples are collected at random during the daily use
of these platforms (e.g., browsing some web pages). Although
not thoroughly investigated in this paper, we conjecture that
there can be a generic model, which is trained using data from
some representative platforms having different factors like case
sizes and DRAM clock speeds. To preliminarily prove this,
we evaluate the trained model on several additional platforms,
whose data has never participated in the original training. The
results are reported in Appendix C, which show that reliable
detection can still be achieved on these unseen platforms. We
leave the comprehensive study to our future work.

Given the 25 MHz sampling frequency®, we perform 8192-
point FFTs that can provide about 3 KHz frequency resolution
and spans only 327.68 us. The FFT overlap we use is 50%, and
it means an FFT is performed with 4096 new points and 4096
previous points. To overcome noise, we average 20 spectra to
derive a single spectrum, i.e., each averaged spectrum spans
about 3.3 ms. For classification, we set the sliding window size
to 12 and the stride to 1. In other words, the classification runs
every 3.3 ms on the spectrogram of the last 40 ms.

Due to the tight timing constraints, we need to minimize the
performance overhead incurred by de-spreading and classifi-
cation. To achieve this, we optimize them by taking advantage
of data-level parallelism. When implementing the de-spreading
component, we use the AVX-256 SIMD instructions, whenever
possible, to process multiple sampled values at a time. In terms
of classification, we fall our back on GPU to provide sufficient
acceleration. As mentioned before, these two components can
be implemented on an FPGA, since FPGAs are truly parallel
in nature. Our future work includes implementing the whole
detector on the FPGA of LimeSDR.

B. Effectiveness of RADAR

mov (X), %0 |mov (X), %0
mov (Y), %0 |mov (Y), %0 | movnti %0, (Y)
clflush (X) | clflush (X) |mov (X), %0
clflush (Y) | clflush (Y) |mov (Y), %0
mfence mfence

U] (W] (I av) ™) VD)

movnti %0, (X) | movnti %0, (X) | evict (X)
movnti %0, (Y) | evict (Y)
mov (X), %0 mov (X), %0

mov (Y), %0 mov (Y), %0

mov (X), %0
clflush (X)

Fig. 11. Different hammering loop bodies.

We first evaluate whether our RADAR system can ef-
fectively detect potential rowhammer attacks under simple
situations, in which no memory-intensive tasks are running.
The evaluation is performed in a normal working environment,

4A crossover USB cable having an embedded bridge controller is needed to
connect two USB hosts. We use such a cable with a PL-2301 bridge controller.
SSince quadrature sampling is used, it provides 25 MHz bandwidth.
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Fig. 12. The detection results in the form of the probability of hammering.

where computers with the same DRAM clock frequency are
present but no closer than 1.8 m (note that later we will show
the distance can be as close as 0 m), and the antenna stands
outside on the metal case using a magnetic mount.

The effectiveness of our RADAR system is evaluated
against the hammering methods illustrated in Fig. 11. The first
five ones (I)—(V) use two addresses to perform single-/double-
sided hammering via c1f1lush, movnti, or eviction, and the
last one (VI) tests one-location hammering following the tool
Sfipfloyd [25]. We also evaluate the effects of a memory barrier
mfence using (I) and (IIT). We note that it does not matter if
single-sided or double-sided hammering is used with respect to
the generation of hammering-correlated sideband patterns, and
thus we use double-sided hammering on platforms A (Haswell)
and B (Sandy Bridge) as their DRAM address mappings are
available [47], [59], [64], and use single-sided hammering on
platforms C and D.

We run each hammering executable for about 3 seconds in
the order given by Fig. 11, and then we run three legitimate
applications for about 3 seconds. The three applications are:
(1) randomly accessing a large array of size 256 MiB, which
will miss the caches and access the memory very often; (2)
playing a video, which will continuously use non-temporal
instructions to access the video; (3) using gcc to compile a
Linux kernel, which will generate a large amount of processor-
memory-storage traffic. Fig. 12 shows the detection results.

From the results, we can observe that malicious hammering
attempts can be effectively detected for each platform under
each scenario (that are represented by the red dots in the
figure), and there are no false positives if the classification
probability threshold is chosen sufficiently high (e.g., we
simply use 0.85). We also notice some interesting phenomena
when conducting these experiments. First, we find that not
every hammering attempt can induce the sideband patterns
of interest, although most of the attempts will. This is why
the detector sometimes gives a probability output less than
the threshold even during hammering. Second, compared to
flushing or bypassing the cache, the patterns induced by
eviction are less obvious, as indicated by the first row of
Tab. II. Yet, they are still recognizable. Third, the use of
memory barriers seems irrelevant to the appearance of such
sideband patterns, although it ensures that all memory accesses
reach the DRAM.

In addition, as studied in [25], rowhammer attacks may be
hidden inside malicious SGX enclaves. Our conjecture is that,
regardless of whether or not hammering is performed inside

an SGX enclave, there should be no difference with respect
to its characteristics in the DRAM clock spectrum. We have
verified this speculation by evaluating our RADAR system
against malicious SGX enclaves on platform C, as illustrated
in Fig. 12. Thus, the proposed RADAR can effectively detect
elusive rowhammer attacks.

The effectiveness of our RADAR system has also been
evaluated against three well-known tools that are publicly
available for demonstrating rowhammer attacks: (1) Google’s
rowhammer-test® [54], which uses a probabilistic approach to
perform single-sided hammering, or takes advantage of the
/proc/self/pagemap interface to acquire physical addresses
for double-sided hammering; (2) Tatar’s hammertime’ [59],
which can achieve more effective double-sided hammering by
considering the detailed information about end-to-end address
translation; and, (3) Gruss’s flipfloyd® [25], which has a tool
for testing one-location hammering.

rowhammer-test

hammertime flipfloyd
AT

o

probability

Fig. 13. The detection results on platform A w.rt. three well-known tools.

We run each tool as is, and Fig. 13 shows the detection
results when these tools are executed on platform A. We just
use platform A as the example, because (1) platform A is
very vulnerable to hammering; (2) hammertime only has the
detailed address translation model for the platforms A and
B; and (3) the detection results for other platforms are very
similar to that for A. From the results, we can observe that
our RADAR can effectively detect hammering attempts.

When running hammertime on platform A, on average there
are 6.6 bit flips per second reported. (Both rowhammer-test
and flipfloyd do not report any bit flip.) We implement a
kernel module that “kills” all of the processes belonging to
untrusted users upon receiving a message from the detector,
and execute hammertime for 100 times. In each of the 100
trials, the hammering behavior was always detected as soon
as it merely started. We have not observed any bit flip
before hammertime is detected and terminated, namely if
only considering prevention of bit flips, the false negative

Ohttps://github.com/google/rowhammer-test
7https://github.com/vusec/hammertime
8https://github.com/TATK/flipfloyd



rate in this case is 0%. The DRAMs on other platforms are
originally less vulnerable, and when our RADAR is on, we
have not observed any bit flip before any hammering tool is
detected and terminated.

On the other hand, the false positive rate of our RADAR
detection is also extremely low. As studied in [4], gcc induces
many false positives under ANVIL; yet, from Fig. 12, we can
observe that gcc introduces no false positives under RADAR.
We also evaluate other SPEC 2006 benchmarks and Apache
HTTP server on platform A. For SPEC benchmarks, we use
their reference inputs, and for Apache server, we use the tool
ab to generate heavy workloads. The representative results are
shown in Fig. 14, and the results for other SPEC benchmarks
are similar to bzip2 (integer) and 1bm (floating-point). From
Fig. 14, we can clearly see that no false positives arise. Note
that no floating-point SPEC benchmarks are used in [4], but we
argue that these benchmarks should be included for evaluation
due to their pervasive manipulation on very large matrices.

SPEC-FP |

bzip2 libquantum sieng mile zeusmp Tbm apache

probabilty

SPEC-INT |

Fig. 14. The detection results on platform A w.r.t. SPEC integer and floating-
point benchmarks as well as Apache HTTP server.

Since these benchmarks represent normal applications well,
the results signify the aforementioned argument that a benign
program barely has a behavior generating a high rate as well
as periodic DRAM accesses for a long period of time (e.g.,
more than 30 ms) to trigger the alarm. (In fact, as indicated by
the results of continuous accesses to a large array in a random
way in Fig. 12, we argue that it is the same bank(s) that should
be periodically accessed rather than just DRAM, which means
it is even more difficult to find the alarm-triggering behavior in
a benign program.) Note that although the result for zeusmp
appears singular in contrast with others, we do not observe any
false positive even when running its four instances in parallel.
It shows that the possibility of synthesizing symmetric vertical
stripes in the spectrogram by multiple simultaneously running
benign programs is very low.

C. Robustness of RADAR

There are two types of noise that may affect the operation of
RADAR. The first type of noise is generated internally, due
to a legitimate use of the computer system which changes the
power of the DRAM clock signal constantly. To create such
noise, we run different applications to impose loads on the
memory system. To quantify the obviousness of the sideband
patterns, we measure how relatively “tall” the patterns of inter-
est are, namely the power difference between the patterns and
their neighboring frequency components. The measurements
are in dB and shown in Tab. II for sideband patterns caused
by clflush, movnti, and eviction. Note that Tab. II only
shows the first one that is recognizable for each case.

The first row of Tab. II lists the baseline values for each
platform having the minimum workload. As we can observe

TABLE II

The relative power (measured in dB) of the hammering-correlated sideband
patterns caused by c1flush, movnti, and eviction respectively.

. Platform
Scenario

A

B

C

D

Baseline

21.97/23.57/9.63

31.06/32.99/27.42

25.22/20.17/13.55

30.83/30.01/19.78

stress -m 10

13.49/16.57/8.37

30.89/26.94/17.97

Ay

.

Playing a video

21.39/22.85/9.97

33.61/29.83/27.20

21.10/18.65/14.11

29.02/25.24/12.89

Compiling kernel

21.30/22.78/8.92

32.86/27.32/26.99

23.20/16.60/13.35

28.27/29.21/15.01

from the other rows, except for platforms C and D under
stress, the patterns used for rowhammer attack detection are
still discernible in the spectrum when much noise is created.
Note that there are n high memory traffic threads spawned
by stress -m n. We find that, when running stress
-m 10 on platform C or D, all of the 10 threads can run
in parallel with the hammering process leading to memory
bandwidth exhaustion, so that up to five-fold time is spent in
a hammering iteration. By contrast, platform A has a dual-
core processor without SMT, which supports only 1 stress
thread simultaneously running with the hammering process;
hence, there is actually no difference between stress -m
1 and stress -m 10 on A, and the memory bandwidth is
sufficient for its traffic. Surprisingly, on platform B, 7 stress
threads can run in parallel with hammering, but our test shows
that they together impose only 1.7 GB/s traffic, which is
much less than the supported 20 GB/s bandwidth. (On other
platforms, one single stress thread can generate 4~5 GB/s
traffic.) Note that, even with enough memory bandwidth, we
have observed that the rowhammer bug is much harder to
trigger while stress is running, let alone when bandwidth
is exhausted. For example, platform A is very vulnerable to
hammering, and on average 6.6 bit flips per second can be
observed without running stress, but only 0.85 bit flips
per second when running one stress thread. Therefore,
the disappearance of the patterns of interest under extreme
conditions is only a minor issue.

The second type of noise exists externally. In reality, there
may be some neighboring computer systems having the same
DRAM clock frequency as the one under RADAR’s watch.
To test whether our RADAR will become “confused”, we
settle platform A as the system under protection and observe
how other platforms using DDR3-1333 affect the operation of
RADAR.

TABLE III
The impacts of external noise on RADAR for platform A.
Scenario Distance 1.5 m 1.0 m 0.5 m 0m
B & antenna out none none none none
A* & antenna out none slight moderate’ moderate/severe'
A* & antenna in none none none none

“These unfavorable impacts can be mitigated.

First, we gradually move platform B towards A starting from
1.5 meters away. The antenna stands outside on the metal case
of platform A. The operation of RADAR is not affected at
all, as shown in the first row of Tab. III. This is because, as
mentioned in Section VI-B, de-spreading will inadvertently
help reduce such noise. Recall that, for de-spreading, the



hardware-dependent A is aligned and used to modulate the
measured signal, and if the measured signal has components
unrelated to the used A, the energy of these components will
be spread. Since the A of A is different from that of platform
B, when using the A of A for de-spreading, the EM-emanated
DRAM clock signals of B are unrelated to the used A, and
their energy is scattered to become negligible noise.

A more interesting scenario arises from using identical
motherboards, as they have the same A. Thus, we move
another platform A*, which is the same as A, gradually
towards A starting from 1.5 meters away. The antenna still
stands outside on the metal case of A. When the distance is
reduced to about 1 m, we start observing “bumps” regularly
and symmetrically sweeping back and forth within +£3 MHz
around the DRAM clock frequency in the spectrum. This
phenomenon is due to the fact that the correct A alignment
with the SSC-affected signal of A is most likely incorrect with
respect to that of A* (unless they coincidently have the same
SSC phase). As long as the antenna picks up the signal from
A more than the signal from A*, the A remains aligned with
the SSC-affected signal of A. As A* gets closer to A, the
magnitudes of the sweeping “bumps” get increased, reaching
the same level as the hammering-correlated sideband patterns.
However, their impacts are moderate, because they have very
distinguishing features such as the spikes forming the bumps
are actually separated from each other by exactly 32 KHz (a
behavior of SSC) so that we can take them into account in the
classifier. The severe impacts come from the situation where
the antenna is too close to A* such that the correct A alignment
is disrupted. We find that the severe impacts can be avoided
by carefully placing the antenna, e.g., on the other side of the
case of A when A* and A are side-by-side.

The same experiment using A* is performed again but with
the antenna placed inside the metal case of A. We use a very
simple self-built antenna, which consists of two pieces of 7.5
cm metal wire. This antenna can easily placed inside the case
of any computer, as shown in Appendix B. This time, no matter
how close A* gets to A, there are no impacts on the operation
of RADAR at all, as shown in the third row of Tab. III. The
reason is straightforward: On one hand, the case of A acts
as a EM shield, and on the other hand, the signal of A is
much stronger inside the case. Note that there may be apparent
reflection effects if the antenna is placed inside the case, but
we notice that many spots can be found where reflections are
not obvious and thus can be ignored.

D. Resilience to Adaptive Attacks

To demonstrate the effectiveness of our RADAR on certain
adaptive attacks, we create such a scenario where the adversary
tries to circumvent detection by deliberately introducing some
random delays into each hammering iteration of a hammering
attempt, as illustrated in Fig. 15. The outer loop in Fig. 15
denotes a hammering attempt that hammers the DRAM for
N iterations. Inside each iteration, we use an inner loop to
introduce some random delay, as its bound b is randomly
chosen in the range of 1 to M.

for i:=0 to N —1do

b:= rand(M)

for j:=0 to b—1do
nop

mov (X), %0

mov (Y), %0

clflush (X)

clflush (Y)

mfence

Fig. 15. Add random delay to each iteration to disturb the hammering period.

Fig. 16 presents the detection results on platform D under
different M values. As we can observe from the figure, even
when M reaches 500, it still cannot circumvent the detection.
(Although theoretically we cannot prove that bit flips can be
prevented when M is 500, we do empirically notice that it
becomes much harder/impossible to trigger the rowhammer
bug on the evaluated platform when M reaches 300, and no
bit flips are induced when M is 500.) We also show the DRAM
clock spectra under different M values in Appendix A, from
which we can find the hammering-correlated sideband patterns
indeed well recognizable.

M = 200 M = 300 M = 400 M = 500

probability

Fig. 16. The detection results on platform D w.r.. different M values.

Compared to the (I) results on platform D in Fig. 12, some
of the results in Fig. 16 are even slightly better. As mentioned
before, not every hammering attempt can induce the sideband
patterns of interest, although most of the attempts will. Since
the aggressor rows are randomly selected, different pairs were
used in these two experiments, which caused a slight detection
difference.

VIII. RELATED WORK

In this section, we mainly concentrate on existing rowham-
mer defenses that do not require unrealistic hardware modifi-
cations. In addition, we describe some related work on using
physical side-channel information to bolster security defenses.

Since the activation of an aggressor row needs to be toggled
enough times within a refresh interval to successfully trigger
the rowhammer bug, a straightforward countermeasure is to
double the refresh rate [40]. However, as shown in several
tests [4], [39], this approach still cannot prevent the bug
from being triggered, especially if the double-sided hammering
technique is used [54]. Another straightforward defense is
to use ECC memory to correct or detect bit flips [34], but
it has been demonstrated that reliable rowhammer attacks in
presence of ECC memory are still highly possible [16], [38].

Due to the explicit use of some special instructions like
clflush in early rowhammer attacks, some mitigation tech-
niques simply prohibit the use of such instructions [49], [54],
but they cannot hinder eviction-based hammering [4], [26].
Given regularities found in various approaches to circum-
venting the effects of CPU caches, static code analysis has



been used to identify suspicious binaries and estimate their
intention levels to perform rowhammer attacks [32]. However,
encryption and secure enclaves can be used to hide any
malicious intention from static analysis [25], [53].

Based on certain characteristics observed in many rowham-
mer attacks, several dynamic detection approaches are pro-
posed. Since a large number of last level cache misses are
usually incurred in the hammering process, some detection
techniques rely on hardware performance counters to capture
suspicious activities for further analysis [4], [30]. Nevertheless,
it is noticed that such cache misses will be concealed from
CPU performance counters, e.g., when an attack is running
inside an Intel SGX enclave [25], [53], which subverts the
assumption made for the detection. Due to the traditionally
used open-page policy in memory controllers, to trigger the
rowhammer bug, two aggressor rows in the same bank need
to be alternately activated. Consequently, some detection meth-
ods use such memory access patterns as an indication of
rowhammer attacks [4], [17]. However, on some platforms, the
memory controllers may be configured to use a closed-page
policy to proactively close a row. In such scenarios, even one
aggressor row is sufficient to induce bit flips around the row
(named as one-location hammering) [25], [42], which makes
access pattern based detection limited.

Usually, to successfully perform a rowhammer attack, an
adversary not only needs the ability to trigger the rowhammer
bug on the targeted system, but also needs to be capable
of steering targeted security-critical data to some vulnera-
ble rows for exploitation. Therefore, instead of detecting or
impeding triggering the rowhammer bug, some mitigation
techniques focus on hardening the system against rowhammer
bug exploitation. Since the two early approaches to exploiting
the rowhammer bug, memory spraying [54] and memory
grooming [61], need to allocate a large portion of memory,
prevention of memory exhaustion has been considered as a
feasible countermeasure [26], [61]. Moreover, in [9], CATT
is proposed to physically partition the main memory into
different security domains, and each domain is segregated
with one another by at least one unused DRAM row (i.e.,
a guard row), in which case, cross-domain bit flips become
impossible. Unfortunately, two new approaches to exploiting
the rowhammer bug, memory waylaying [25] and memory
ambush [13], have been developed lately, which defeat the
above-mentioned mitigation techniques.

Although CATT is no longer effective, the concept of guard
rows 1is still valid and effective for absorbing exploitable bit
flips. By using guard rows for fine-grained memory isolation,
GuardION and ALIS can make the DMA-related hammerable
area non-exploitable [60], [62]. To enable defenses against
more general rowhammer attacks, ZebRAM is proposed
in [36] to isolate all data rows with guard rows in a zebra
pattern. To avoid wasting half of the DRAM, the guard rows
in ZebRAM are used as an efficient swap space in memory.
However, much performance overhead may still be caused for
memory-intensive applications. On the contrary, our proposed
technique does not incur any performance overhead due to its

completely non-intrusive and passive nature.

There has been much research work on exploiting physical
side-channel information for attacks [2], [3], [5], [18], [20]-
[24], [31], [35], [37], [50], [52], [58]. Lately, many researchers
have also started examining how to leverage such side-channel
information to help defenses. For instance, power- or EM-
based code execution tracking has been proposed to check
whether the control flow integrity is violated [28], [43], [45].
Moreover, power or EM side-channel information has been
used in discovering malware and anomalies on embedded
devices [15], [55], [63], identifying the attacker ECU on in-
vehicle networks [14], detecting intellectual property theft [6],
[57], and so forth. Yet, there has been little prior work that
uses physical side-channel information to perform rowhammer
defenses, and to the best of our knowledge, only one very
recent proposal leverages features in power traces to detect
rowhammer attacks on embedded systems [63]. Our work is
the first one on leveraging EM side-channel information to
detect rowhammer attacks.

IX. CONCLUSION

In this paper, we have investigated how to leverage EM side-
channel information to detect rowhammer attacks. We have
found that there are distinguishable sideband patterns corre-
lated with hammering activities in the spectrum of the DRAM
clock signal. Based on this observation, we have proposed
and implemented a system named RADAR, which unveils and
recognizes hammering-correlated sideband patterns to help set
up defenses against even elusive next-generation rowhammer
attacks (e.g., the ones concealing themselves inside some SGX
enclaves). The effectiveness and robustness of RADAR have
been demonstrated under different scenarios. Besides, RADAR
does not degrade the performance or resource utilization of the
computer system under protection.

In the future, we plan to implement the entire detector part
of RADAR on an FPGA (e.g., the one on the used LimeSDR),
and perform large-scale experiments in, e.g., a data center. In
addition, we will conduct a thorough study on the possibility
of the existence of a generic model for classification as well
as investigate other properties of RADAR such as its power

consumption’.
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9Our conjecture is that RADAR can actually help save energy compared to
the traditional software-based rowhammer defenses. RF transceivers/receivers
and FPGAs used by RADAR normally consume much less power than CPU.
For example, the LMS7002M transceiver used by LimeSDR consumes only
550mW in its SISO mode (the mode used in this paper) and the Altera Cyclone
EP4CE40F23 FPGA on the board is also low-power. By contrast, a high-
end CPU consumes more than 100W when it is active, so reducing the CPU
workload imposed by the traditional software-based defenses may help reduce
the overall power consumption.
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APPENDIX A

Section VII-D has introduced an adaptive attack which tries
to circumvent detection by adding some random delays into
each hammering iteration. The random delay varying range is
controlled by a parameter M. Fig. 17 shows the DRAM clock
spectra of platform D under different M values. (Note that the
experiments are performed under normal circumstances where
the SSC feature is always on.) As anticipated, when random
delays are introduced, the periodic behavior of hammering is
disrupted to some extent, and thus the hammering-correlated
sideband patterns become less prominent than those without
adding such delays. However, as illustrated in the figure, even
when M reaches 500, the patterns are still recognizable for
its use in detection.

From Fig. 17 (A) that corresponds to the normal situation
without adding random delays, we can observe three pairs of
“bumps” very clearly on both sides of the central spike, which
are circled and pointed to by arrows. They are located at about
1066 MHz £ k x 3.9 MHz in the spectrum, where k = 1,2, 3.
The reason for this phenomenon is that the modulating signal
generated by the switching behavior of hammering on platform
D has strong second and third harmonics. Therefore, when
this signal AM-modulates the DRAM clock carrier signal,
the sideband patterns corresponding to the second and third
harmonics will arise noticeably. Nevertheless, this does not
cause any problem or difference for our detection method,
since there are still two vertical stripes symmetric about the
DRAM clock frequency in the spectrogram.
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Fig. 17. The power spectra under different M. In a hammering attempt, each hammering iteration will be delayed by a loop whose bound is randomly chosen
in the range of 1 to M. The larger M is, the more disturbance is added into the hammering period.

APPENDIX B

Each computer system under the watch of the proposed
RADAR will be equipped with an antenna and a detector.
The antenna used in our RADAR can be a very simple whip
antenna, such as a telescopic antenna or just a piece of wire.
Fig. 18 shows two antennas used in RADAR. The left one is a
telescopic antenna, which has a magnetic mount to make itself
easy to stand on the metal case of a computer. The right one
is a self-built antenna, which consists of two pieces of metal
wire connected to an antenna balun. The wire is coated with
plastic for isolation.

Fig. 18. Two antennas that have been used in RADAR. In both figures, the
used LimeSDR is also shown.

As evaluated in Section VII-C, when two identical platforms
are very close (e.g., right next to each other), we need to place
the antenna inside the metal case. We can generally manage to
place the telescopic antenna inside the mini tower (or bigger)

cases. By contrast, our self-built antenna can be easily placed
inside the case of any size (e.g., small form factor or server
chassis).
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Fig. 19. Placing the self-built antenna inside the metal case of a SFF computer.

For example, Fig. 19 illustrates how to place our self-built
antenna inside a small form factor (SFF) computer of size 31.2
x 29.0 x 9.3 cm. The antenna is inserted into the computer
case through the holes on the backplate and taped on the power
supply, which can be seen from the left part of Fig. 19 (denoted
by the dashed line). We simply leave the antenna balun outside
the case, as shown in the right part of Fig. 19. This placement



just took us several minutes. Even though it was possible to
spend longer time on placement in some situations, we argue
that it might just need to happen once and can remain fixed if
no significant changes need to be made on the hardware side
of the platform later on.

Fig. 20. Apparent hammering-correlated sideband patterns.

Given the aforementioned antenna placement, we execute a
program for hammering. As we can observe from Fig. 20, the
hammering-correlated sideband patterns are extremely clear.
Again, the SSC is always on and the spectrum is shown after
de-spreading.

APPENDIX C

To preliminarily demonstrate a specifically tailored model is
not necessary for classification, we evaluate our current CNN
model on two additional platforms, whose data has never been
used in the original training. These two platforms E and F are
listed in Tab. IV. We can find that platforms A, B, and E are
all equipped with DDR3-1333 modules, but their DRAM chip
vendors are different (c.f., Tab. I). Likewise, both platforms D
and F have DDR4-2133 modules, but their memory chips are
also from different vendors.

Furthermore, we change the memory modules of E and F to
form another two platforms E’ and F’. As listed in Tab. IV,
E’ uses DDR3-1600 and F’ uses DDR4-2400. Note that both
of these two DRAM speed types have never been involved in
the original model training. We conduct the experiments listed
in Fig. 11 on these four platforms.

TABLE IV
Additional platforms on which our prototype is further evaluated.
Platform Motherboard CPU Memory
E Dell OptiPlex 3020 Intel 15-4590 16 GiB Kingston DDR3-1333
E’ Dell OptiPlex 3020 Intel 15-4590 8 GiB Micron DDR3-1600
F Dell XPS 8920 Intel 17-7700K 16 GiB Hynix DDR4-2133
F’ Dell XPS 8920 Intel i7-7700K 16 GiB Hynix DDR4-2400

The detection results are presented in Fig. 21. From the
results we can observe that the model, trained using data
from platforms A, B, C, and D, works well for recognizing
potential attacks on platforms E, E’, F, and F’. Although
data in terms of DDR3-1600 and DDR4-2400 modules has
never been seen during the CNN model training, very good
generalization has been achieved, which is able to classify new
examples having symmetric vertical stripes in the spectrogram
as possible rowhammer attacks.

IR A
Platform E Platform E'

Fig. 21.
Section. VII without any change.

Platform F'

P 3
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The detection results on additional platforms in the form of the probability of hammering. The CNN model for classification is the one trained in



