Constraint-Guided Dynamic Reconfiguration in Sensor
Networks

Sachin Kogekar, Sandeep Neema, Brandon Eames, Xenofon Koutsoukos, Akos Ledeczi,
and Miklos Maroti

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science
Vanderbilt University
Nashville, TN 37235
+1(615) 343 7472

{sachin.kogekar, sandeep.neema, brandon.eames, xenofon.koutsoukos, akos.ledeczi, miklos.maroti}@vanderbilt.edu

ABSTRACT

This paper presents an approach for dynamic software reconfigu-
ration in sensor networks. Our approach utilizes explicit models of
the design space of the embedded application. The design space is
captured by formally modeling all the software components, their
interfaces, and their composition. System requirements are ex-
pressed as formal constraints on QoS parameters that are meas-
ured at runtime. Reconfiguration is performed by transitioning
from one point of the operation space to another based on the con-
straints. We demonstrate our approach using simulation results
for a simple sensor network that performs one-dimensional track-
ing.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special Purpose and
Application-based Systems — Real time and embedded systems.

General Terms
Algorithms, Management, Design

Keywords
Runtime/Dynamic Software Reconfiguration, Design Space Ex-
ploration

1. INTRODUCTION

Reconfiguration and self-adaptation are vital capabilities of sensor
networks that are required to operate in dynamic environments
that impose varying functional and performance requirements.
Dynamically adaptive software comprises of tasks that detect in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

IPSN’04, April 26-27, 2004, Berkeley, California, USA.

Copyright 2004 ACM 1-58113-846-6/04/0004...$5.00.

ternal and external changes to the system, reflect on the event oc-
currences, and adapt to the new conditions. Ad hoc wireless sen-
sor networks, in particular, must be designed with adaptation
capabilities that enable them to handle a multitude of operating
conditions. Reconfiguration in such systems presents significant
challenges because of the severe constraints in energy, computa-
tion, and communication resources. Runtime technologies that al-
low software to evolve as system requirements and/or its envi-
ronment change are critical to the development and deployment of
such systems. This is in contrast to the current state-of-the-art in
that it does not allow embedded software to evolve at runtime.
Conventional practices for embedded software development rely
on iterating single-point designs. This, in effect, implies elimina-
tion of component and system design alternatives in the early
stages of the development process. Such elimination leads to
suboptimal and inflexible design that is difficult and expensive to
deploy and maintain.

We present an approach for building self-adaptive sensor net-
works based on Model-Integrated Computing [1]. Our approach is
utilizing explicit models of the design space of the embedded ap-
plication. The design space is captured by formally modeling all
the software components, their interfaces, and their composition.
System requirements are expressed as formal constraints on op-
erational parameters such as power consumption, latency, accu-
racy, and other QoS properties that are measured at runtime.
These constraints and models are embedded in the running appli-
cation forming the operation space of the system. Reconfiguration
is the process of transitioning from one point of the operation
space to another.

The key question in reconfiguration of sensor networks is how to
decide what the new configuration should be. This can be consid-
ered a search problem in the operation space. The exploration of
the operation space is a challenging problem since it must be per-
formed within stringent time bounds and resource constraints. We
propose an efficient approach for performing this search based on
(1) parameterized constraints captured in the embedded models,
and (2) online constraint solving using a combination of symbolic
constraint satisfaction and linear programming. Once a new con-
figuration that satisfies all the constraints is found, the reconfigu-
ration can be accomplished by online software synthesis targeting
either an interpreted language (e.g. Java) or a command interface.

We demonstrate our approach using simulation results for a sim-
ple sensor network that performs one-dimensional tracking based
on the Berkeley MICA motes. Reconfiguration is performed by a
controller that runs on a base station that is capable of monitoring
the constraints. We present a modeling paradigm for TinyOS ap-
plications that supports alternative implementations of the same
components and explicit representation of constraints. Our design
space exploration tool is then used to evaluate the constraints
based on measurements of the power available at each node — the
primary resource constraint in this application — and selects an ap-
propriate configuration. Once the next configuration has been se-
lected, the reconfiguration process involves stopping, rewiring
and restarting the application components at the sensor nodes.

Software reconfiguration methods have been widely applied in ar-
eas such as hardware/software co design and multimedia applica-
tions [18]. The applicability of such methods to sensor networks is
a very challenging problem due to resource constraints. Combina-
torial search techniques and heuristics are applied to the problems
of design partitioning, architecture mapping, scheduling and
synthesis. A methodology for system synthesis is provided in [2],
which utilizes evolutionary algorithms to optimize the partitioning
and allocation of a dataflow-based application specification onto a
heterogeneous processing network. Design space exploration
techniques have been utilized for integrating simulation engines
together with a design-space exploration tool to facilitate embed-
ded systems design [3], for evaluating and optimizing low-level
partitioning and mapping decisions for embedded systems which
target morphable platforms [4], and for partitioning designs onto a
heterogeneous network of DSPs and FPGAs [5]. A design space
exploration tool to aid in the development of embedded software
for automotive applications has been developed in [6]. A related
approach for online reactive constraint solving motivated by the
needs of resource constrained embedded systems such as printers
has been presented in [7].

Active software [8] is a related research direction motivated by
requirements such as handling increased functional complexity,
providing substantially increased robustness, and providing
autonomy. An overarching theme of this approach is that software
must take active responsibility for its own robustness and the
management of its own complexity, and in order to do so, soft-
ware must incorporate representation of its goals, methods, alter-
natives, and environment. Candidate technologies for active soft-
ware include self-adaptive software, negotiated coordination,
tolerant software and physically grounded software. In our view,
our approach falls under the umbrella of self-adaptive software. In
[8], evaluation is identified as the hardest and most important
problem for self-adaptive software. We argue that performance
evaluation can be managed with a constraint-based approach.
Evaluation of constraints parameterized with the operational pa-
rameters gives a clear and quantifiable understanding of the sys-
tem performance.

The remainder of the paper is organized as follows. Section 2 pre-
sents the proposed architecture for reconfiguration of sensor net-
works. The constraint-based design space exploration approach is
described in Section 3. In Section 4, the approach is applied to
sensor networks based on a graphical modeling paradigm that
supports alternatives and constraints. A case study of a tracking
application is presented in Section 5.

2. SOFTWARE RECONFIGURATION IN
SENSOR NETWORKS

2.1 Platform Description

Our work targets wireless sensor networks that are based on en-
ergy and resource constrained devices. One of the most widely
used platforms for researching wireless sensor networks with lim-
ited resources is the Berkeley MICA motes [9]. The MICA mote
has a 4 MHz microcontroller, 4 KB of RAM, 128 KB of flash
memory, 916 MHz wireless radio transceiver (19.2 Kbps transfer
rate, 200 feet range) and is powered by two AA batteries. Daugh-
ter cards with various sensors and actuators are available, includ-
ing photo, temperature, humidity, infrared and barometric pres-
sure sensors, accelerometers, magnetometers, and microphones,
and sounders [10].

The Berkeley MICA motes run the TinyOS operating system [9],
an open source, event driven and modular OS designed to be used
with networked sensors. A TinyOS application is a statically
compiled graph of components. Components have memory frames
to store their state, and communicate with each other through used
and provided interfaces that contain logically related commands
and events [11]. Components can post tasks to process longer
running computations, which are executed in order by the sched-
uler. TinyOS comes with a library of OS components that handle
task scheduling, radio communication, clocks and timers, ADC,
I/O and EEPROM abstractions, and power management. Applica-
tion developers can select a subset of these modules, extend or
override them if necessary, and statically compile them into the
final executable.

A typical MICA system consists of tens to hundreds of motes
forming an ad hoc multi-hop network and a base station that is
typically a PC class computer. The motes themselves do not have
enough resources to evaluate the QoS parameters, search for the
next configuration and compute the necessary reconfiguration
steps. They can, however, communicate the measured parameters
to the base-station where the computationally intensive reconfigu-
ration decisions are made and the necessary elementary reconfigu-
ration commands are sent back to the motes that execute them.
We assume that the motes do have enough program memory to
store alternative components. This assumption is reasonable; it is
typically the data memory that is the limiting factor for MICA ap-
plications. Our reconfiguration approach is detailed in the next
section.

2.2 Architecture for Software Reconfiguration

We have prototyped an architecture for software reconfiguration
shown in Fig.1. In addition to the application, each mote in the
network contains a Monitor and a Reconfigurator component. The
Monitor is responsible for measuring the local QoS parameters
and communicating them to the base station. The Reconfigurator
is responsible for performing the necessary local application
changes upon notification from the base station. The base station
contains the following components: (i) the Global Constraint
Monitor (GCM), (ii) the GRATISPlus modeling environment that

supports alternatives and explicit representation of constraints,
(iii) the design space exploration tool DESERT for selecting the
desired configuration, and (iv) the GRATIS modeling environ-
ment for generating the new TinyOS configuration.

Base Station

GRATISPlus ’—" DESERT

’—" GRATIS

Vector QoS 1 Design Space Design
Parameters Representation Configuration

Global

Constraint

Monitor

[MoTE S
[MoTE 2
MOTE 1

Reconfigurator

Application

Figure 1. Software architecture for reconfiguration

The Monitor gathers information about certain critical QoS pa-
rameters such as available ‘Power’ at each mote. The Monitor
sends the parameters to the GCM at the base station. The GCM
has a database of parameters, the dependent constraints and asso-
ciated thresholds. If the parameter changes are above the thresh-
olds in the database, the GCM updates the constraints in the
GRATISPlus modeling environment. The GRATISPlus to
DESERT mapping interpreter generates a representation of the
GRATISPlus model and constraints to be used as the input to
DESERT. DESERT evaluates these constraints and generates sin-
gle-point designs that are valid with respect to the updated con-
straints. This is mapped into a new GRATIS model which then
generates the new TinyOS configuration. The old and new con-
figuration files are then analyzed by another tool that generates
the elementary reconfiguration commands specifying which com-
ponents need to be stopped, rewired and (re)started. The list of
commands are sent to the Reconfigurator on each mote. The Re-
configurator executes the command list and restarts the applica-
tion. Hence, the application has been dynamically reconfigured to
adapt to changes in QoS parameters.

We realize that this approach of keeping global parameter knowl-
edge in a centralized database has limitations with respect to scal-
ability and introduces a single point of failure. However, with the
current limitations of the sensor nodes and the smaller size sensor
networks that we are prototyping our approach with this organiza-
tion suffices. We are planning to extend this towards hierarchical
database organization as scale up the sensor networks

2.3 Reconfigurator

TinyOS applications are statically compiled. Neither the memory
frame of components, nor the wiring between components (com-
piled as function calls) can be changed at run-time. Therefore,
supporting software reconfiguration within the TinyOS architec-
ture requires new components that assist during reconfiguration
and perform the dynamic wiring of components. At least two is-
sues need to be addressed. First, we have to introduce new and
remove old components from the graph of running components
during software reconfiguration. Second, we need to dynamically
change the wiring of components. A module, called the Recon-
figurator, orchestrates the reconfiguration.

We say that a component is reconfigurable, if it is not included in
all configuration graphs. We require that each reconfigurable
component implements the StdControl interface, which is the
standard TinyOS interface for starting and stopping a component.
During software reconfiguration, the Reconfigurator first stops all
components that need to be disabled. Note, that components can-
not veto this decision. Stopping a component may require addi-
tional tasks that cannot be performed immediately. Nevertheless,
the stopped component must finish its de-initialization using a
fixed number of tasks, which cannot post further tasks, and reach
a state where it does not participate in any further communication.
This rule allows the Reconfigurator to wait till all stopped compo-
nents are completely de-initialized.

The edges of the configuration graphs represent interfaces links
connecting the provider to the user of the interface. We say that a
link is reconfigurable if it does not appear in all configuration
graphs. Each component connected to a reconfigurable link must
determine the target component dynamically when calling a
command. This is best achieved by replacing the reconfigurable
links of components by links to specialized switching components
that make the dynamic binding. The implementation of these
switching components depends on the involved interface and may
include additional logic for keeping the contract of the interface
during the switch. For example, the SendMsg interface assumes
that each ‘send’ command is followed by a ‘sendDone’ event.
When the switching component makes the switch at a point when
the command has been called but the event has not arrived, it must
respect the implicit contract by firing the ‘sendDone’ to keep the
user of the interface synchronized. Each switching component
must implement the ‘rewire’ command that takes a configuration
number, and based on the current configuration number route the
commands and events using precompiled switch and case state-
ments.

After the reconfigurator stops all components that are not used in
the new configuration, it calls the rewire command on each switch
component. Finally, it calls the start command of the StdControl
interface on each component that need to be started in the new
configuration.

2.4 The GRATIS Modeling Environment

Textual representation of component composition, especially
when it is spread across multiple files is inherently error-prone.
Even in the simplest scenario a more expressive representation of

our components and the interconnections between them can help
us avoid errors and help others understand the application. With
more complex components and especially with hierarchical com-
position this becomes an absolute requirement. Model Integrated
Computing [1] in general and the Generic Modeling Environment
(GME) in particular can meet these challenges.

We have designed a modeling paradigm for GRATIS and config-
ured GME [12] accordingly. The graphical representation pro-
vides a solid and intuitive interface for designing and maintaining
complex applications. The constraint management capabilities of
GME allow us to specify the necessary syntactical constraints for
our components and for the usage of their interfaces. Our initial
goal with GRATIS was to specify the interface and configuration
information visually, and generate the corresponding textual rep-
resentation automatically. Since all practical applications use sys-
tem components from the TinyOS distribution, we also had to
provide a mapping from the existing large code base to the
graphical environment. Therefore, our interpreter not only gener-
ates text files from graphical models, but it is also capable of pars-
ing existing files and building the corresponding GRATIS models
from them. This way we can provide all TinyOS components as a
library to the user of the GRATIS environment.

2.5 The GRATISPlus Modeling Environment

GRATISPlus is an extended version of GRATIS [12]. Using
GRATISPlus, the user can model more than one implementation
(alternative software components - viz. modules) of the same
TinyOS application, in a very compact and scalable representa-
tion, along with the constraints that can be evaluated to generate
valid configurations.

The core concepts in the GRATIS modeling paradigm include in-
terfaces, modules and configurations representing TinyOS soft-
ware components of the same name. The interactions between
these components are modeled with /ink and equate connections.
A link specifies that a component provides and another uses a cer-
tain interface. An equate connection specifies that the implemen-
tation of an interface is delegated to a subcomponent. GRATIS-
Plus introduces an additional component called group, to allow
modeling of alternative implementation of software components.
A group can contain modules, interfaces and equate connections.
It typically contains more than one module representing alterna-
tive implementations of logic or algorithms. GRATISplus also al-
lows for modeling of constraints using condition modeling objects
that are contained in configurations. The ‘statement’ attribute of a
condition object contains the actual constraint expressed in the
Object Constraint Language (OCL) [17]. E.g. self.power <= .05.
The GRATISPlus meta-model is shown in Fig.2.

GRATISPlus Meta Model

configuration] o

==model=> et
interfaces |« group ecuate link
<=model>> <<model=> <<connection®= <<connection==

module
<<model>>
>—
event commmand Oneto Many Contaimment Reltionship

<<model=> <<model>>

Figure 2. GRATISPlus Meta-Model

3. CONSTRAINT-BASED
EXPLORATION

DESIGN

In this section, we describe the constraint based design space ex-
ploration implemented in the DESERT tool. Design space explo-
ration in DESERT entails pruning the design-space with the ap-
plied constraints. An intuitive user interface lets the user perform
the exploration interactively. The end result of the exploration is a
pruned design space that contains only a few design configura-
tions that are valid with respect to the applied constraints. In the
rest of this section, we formalize the representation of design
spaces in DESERT, and then we briefly review the encoding and
pruning of design spaces.

3.1 Design Space Representation

Before we formalize the notation, we introduce the modeling lan-
guage used by DESERT to represent design spaces. Fig. 3 shows
the meta-model of the DESERT input modeling language. The
core concepts in the modeling language are Space-s, Element-s,
Property-s, and Constraint-s. An Element represents a hierarchi-
cally composed item in the space to be explored. A value of true
for Decomposition attribute implies inclusive ~AND-
decomposition, which means that the Element is composed of all
its children in all configurations. A value of false, on the other
hand, implies OR-decomposition, which means that the Element
is composed of exactly one of its children in any configuration.
The children of an OR-decomposed element represent alterna-
tives, i.e. a choice has to be made among the alternatives in the
design space exploration based on constraints. An element with no
children represents a leaf in the hierarchy, regardless of the value
of the Decomposition attribute. A Space is simply a composition
of Elements, and is equivalent to an Element with a Decomposi-
tion value of true. Several Spaces may be composed together to
define the aggregate design space for the system.

Space

Caonstraint Element

context

expression ; String Decomposition : Baolean

’_T t

Froperty

Mame : String
Compaosition : String

Figure 3. Meta-model of DESERT

An Element can contain zero or more Properties. The general no-
tion of property is a characterization of an element; however, the
specification and its semantic interpretation may differ based on
the decomposition of the element and its placement in the hierar-
chy. For leaf elements, property values are specified as an input
to DESERT, whereas for non-leaf elements, DESERT computes
property values, while evaluating constraints, based on the de-
composition of the non-leaf element, as well as the Composition
policy of the property. Notice that multiple values may be pro-
vided for a Property of a leaf element, representing another di-
mension of choice with a kind of parameterization. For OR-
decomposed elements, the composite property is an exclusive-OR
of any one of the child elements, while for AND-decomposed
elements the property of the element is a composition per the
Composition policy. DESERT implements a number of Composi-
tion policies, such as additive, multiplicative, maximum (or
minimum). Custom Composition policies are also supported;
however, the user is required to provide the composition algo-
rithm. DESERT has well-defined interfaces for implementing cus-
tom composition policy.

Constraints are the specification that the design space exploration
evaluates over the provided design space, and produces a
“pruned” space that contains only such designs that satisfy the
constraint. To remain consistent with the selected meta-modeling
language (UML class diagrams and OCL), we use a variant of
OCL for constraint specification.

We summarize this mechanism of structuring design spaces as hi-
erarchically layered parameterized alternatives, and demonstrate
its scalability in representing large design spaces with the follow-
ing example: With @ alternative implementations per OR-
decomposed element, and #n OR-decomposed elements on each
level of an m -level deep refinement hierarchy, this representation

can define: a ko

k

ments. As an example, with n =4, @ =3, and m =3, a total of

design configurations, where

=(k,,_, +1)xn, and k; =n , using just (axn)” leaf cle-

m

1728 leaf elements can represent 384 design configurations in the
space!

Formally, a design space is a set, and we will show its formulation
in the following expressions. In formulating a space we introduce
the notion of a configuration. A configuration is a particular selec-

tion of choices in the space. Let Conﬁgs(d) be the set of all
configurations that include an elementd , and y (d) be the set
of children of d . Also let D j be the set of values of prop-
erty j , and let P(l) be the set of properties in a leaf element / .

Then, we can define the set of possible instantiations PS (l) of

the leaf element / as:

() 1)
ps()=T]p,
J
Now, we can construct the set of configurations recursively, de-
pending on element decomposition, as follows:

)
PS(d) LEAF
Configs(d)= H Configs(x) AND
xez(d)
U Configs(x) OR
xez(d)

Let, R, be the root element of the k -th space, then

Conﬁgs(iﬁ k) is the set of all configurations in the K -th

space. The aggregate design space can now be defined as:

DS = H Configs(R,) ®)
k

3.2 Design Space Encoding and Pruning

Notice that since we are focusing on structural semantics of the
design space and intend to compute with structural constraints,
manipulation of design-spaces can be reduced to set operations:
calculating product spaces (composition of design spaces) and
finding subspaces that satisfy various (structural) constraints.
Since the size of design-spaces is frequently huge, execution of
these set manipulation operations by enumerating all elements is
hopeless. Therefore, we choose to perform the manipulation op-
erations symbolically. Two problems had to be solved: 1) sym-
bolic representation of design-spaces, and 2) symbolic representa-
tion of constraints.

If we restrict the parameters of model objects to finite domains,
the design space will be also finite. By introducing a binary en-
coding of the elements in a finite set, all operations involving the
set and its subsets can be represented as Boolean functions [13].
These can then be symbolically manipulated with Ordered Binary
Decision Diagrams (OBDD-s) [13], a powerful tool for represent-
ing, and performing operations involving Boolean functions. The
choice of encoding scheme has a strong impact on the scalability
of the symbolic manipulation algorithms, as it determines the

number of binary variables required for representing the sets. In
addition to encoding the structure of the design-space, the encod-
ing scheme has also to encode the parameters of the parameterized
model components. Subsequent to encoding, and deciding the
variable ordering, the symbolic Boolean representation is mapped
to an OBDD representation in a straightforward manner. The de-
tails of our encoding scheme have been described in [14].

We identify two basic categories of structural constraints that
DESERT can compute efficiently. We discuss their symbolic rep-
resentation here briefly.

Compatibility and Inter-space constraints — These constraints
specify relations among subspaces in the overall design space, ex-
pressing semantic compatibility between different elements.
Symbolically, the constraints can be represented as a Boolean ex-
pression over the Boolean representation of the elements of the
design-space.

Property constraints — Property constraints specify bounds on the
composite properties of elements in the composed system. The
important challenge for the property constraints are that they are
derived from structural characteristics of designs. As we men-
tioned earlier different properties compose differently, e.g. cost
can be composed additively, latency can be composed as addi-
tively for pipelined components, and as maximum for parallel
components, etc. DESERT provides some built-in composition
functions (addition, maximum, minimum, etc.), and has a well-
defined interface for creating custom composition functions

In addition to these basic categories of constraints, complex con-
straints may be expressed by combining one or more of these con-
straints with first order logic connectives. The symbolic represen-
tation of the complex constraints can be accomplished simply by
composing the symbolic representation of the basic constraints.

Note that the constraints that we consider here are different from
temporal constraints, which assert temporal invariants over a dy-
namically evolving system. Temporal constraints can be valuable
in pre-verifying temporal properties about an evolving system,
however, temporal the verification is based on the assumption of a
known/characterizable state-space of the system. The state-space
of a sensor network on the other hand is extremely difficult to de-
fine and characterize. Therefore, we take a approach of asserting
constraints that are temporal invariants in the sense that they de-
fine properties which should hold over different possible (non-
deterministic) evolution paths of the system, however, we do not
pre-verify these assertions, instead we check these assertion dur-
ing system operation at each evolution step.

According to our experience, OBDD based representations scale
well for representing the structure of the design space (nested
AND/OR expressions). The critical challenge in scalability occurs
during the design-space pruning step. Automatic application of
complex constraints to large spaces may result in explosion of the
OBDD-s therefore DESERT has an interactive user interface to
influence this process. Users can control the importance of con-
straints and select the sequence order of their application. We are
experimenting with re-encoding the design-space after each prun-
ing step, which usually results in a drastic decrease in the number
of binary variables.

The primary advantage of the symbolic design space pruning ap-
proach is that it is exhaustive: the pruned space includes all of the
designs, which meet the applied design constraints. A signifi-
cantly simpler, but still useful alternative approach to design space
pruning is to find a single design configuration (not all), which
satisfies the selected design constraints. We currently experiment
with various constraint solvers and languages, such as Oz [15] to
develop solution for this approach.

4. MODELING OF ALTERNATIVES AND
CONSTRAINTS

In this section, we formally define the design space for an applica-
tion modeled in the GRATISPlus modeling language, which was
introduced in section 2.5. We then show how this design space
can be mapped onto DESERT, thereby allowing exploration and
pruning of the space by applying the captured constraints.

A GRATISPlus model Gp is a tuple (T P C), where C is the
set of GRATISPlus constraints, and 7’ < is a tree (N JE) The

vertex set N of T’ < is the set of software components (i.e. inter-
faces, modules, group, and configurations). The directed edge set
E of T ¢ Tepresents containment relation between hierarchical

modeling elements.
Yv,,v, €N 4)
v, €children(v,)iff 3e=(v,,v,)e E

where children(n) is the set of objects contained in a an ob-
Cfgc N,Grpc N, and

Mod c N as disjoint set of objects of type Configurations,
Groups, and Modules respectively in a GRATISPlus model. As
mentioned earlier, a configuration exhibits AND-decomposition
semantics, while a group exhibits OR-decomposition semantics.
GRATISPlus Modules are characterized with properties, over
which the constraints are evaluated. An example of such a prop-
erty is the power consumed by a particular module.

ject n. We also define

A constraint ¢ € C is a tuple (cons, ctx) , where cons is the

constraint expression, written in a variant of OCL, and ctx € N ,
is the context of the constraint (referred to using the OCL key-
word ‘self” in the constraint expression)

We now discuss the mapping of GRATISPlus onto DESERT.
The execution of such a mapping allows the DESERT tool to be
used to explore and prune this design space. Under this mapping a
GRATISPlus model maps onto a single DESERT Space, whose
elements represent GRATISPlus components.

We define Gp2Des: N <> S as a bijection, from objects in

Gp to elements in DESERT, S being the set of DESERT ele-
ments. The following holds under this mapping:

Vv,v, e N ®)
v, € children(v,) < Gp2Des(v,)
€ ;((Gp2Des(v2))

The decomposition attribute of a DESERT element is defined as
follow:

Ydee S (6)
-1
e GpDes™ (de)
decompositiont(de) = € e 4
GpDes ™ (de)
false
e Grp

The mapping of GRATISPlus constraints to DESERT is straight-
forward, and simply involves the mapping of the GRATISPlus
constraint context onto its projection element under the

Gp2Des bijection. The properties of GRATISPlus modules are

mapped to properties in the corresponding DESERT element, with
the values appropriately associated. Once the mapping from
GRATISPlus onto DESERT is complete for an application,
DESERT prunes and explores the design space. The set of Design
configurations that meet all constraints are returned, and the re-
sults are mapped back onto the GRATISPlus application. The
mapping from DESERT back onto GRATISPlus (or equivalently
GRATIS) is very simple. A DESERT output configuration con-
tains a binding for each OR-decomposed element in the DESERT
space to a direct child of that element. The binding represents the
resolution of the design choice represented by the OR-
decomposition. This selection is mapped back onto a GRATIS
representation by modifying the original GRATISPlus tree to re-
place each vertex of type Group with its corresponding child, per
the binding contained in the configuration. The resulting GRATIS
model has all design decisions resolved, and consists purely of
vertices of type Module and Configuration. All Group nodes are
resolved by the DESERT pruning process.

S. CASE STUDY: ONE-DIMENSIONAL
TRACKING

5.1 Problem Description

The purpose of this TinyOS application (called Aislemonitor) is to
track the movement of people across an aisle. We consider a sen-
sor network consisting of eight motes shown in Fig. 4. Each mote
is equipped with an infrared motion detector. Each sensor gener-
ates an electrical pulse based on the difference between the tem-
perature of a heat source and the ambient temperature of the envi-
ronment. The motion detectors are characterized by their field of
view. Based on the sensor measurements, each mote computes an
estimate of the positions of the people located in its field of view

represented as Gaussian distributions (MO i). The motes are

placed so that they have overlapping fields of view and they cover
the whole space. Neighboring motes communicate with each
other the positions that lie on overlapping fields of view and they
climinate duplicate entries based on the proximity between two

distributions. . So if (,ui 0, <FU; <E [+ O'[) , the entry

(u 0 /.) will be deleted. This tracking algorithm does not use

any a priori information (e.g. a dynamical model) for the motion
of people walking in the aisle.

Reconfiguration is driven by power constraints on the motes. A
Monitor component measures the battery power remaining on
each mote, and communicates the power level to the GCM in the
base station. If the battery power of the i mote falls below 5%,
then it will send its data (estimated positions) to its neighboring
motes for two consecutive time-steps, and it will shutdown. The
tracking application in motes i-1 and i+1 will be reconfigured to
account for the loss of the mote. These motes start computing the
velocity for each person. If the position gets out of their field of
view, an estimate is maintained by propagating the Gaussian dis-
tribution using the latest value for the velocity.

The simple tracking application described above is used to dem-
onstrate the reconfiguration capabilities of the proposed architec-
ture. The application was modeled in GRATISPlus. The different
versions of the application were simulated in TOSSIM [16]. The
data required for the simulation was generated using Matlab and
provided to each mote through a text file.

MOTE Layout

Overlap MOTE Aisle

]

A

| 65 feet
Sensor Range

Figure 4. Aisle monitoring application

5.2 Aislemonitor Application Configurations

5.2.1 Aislemonitor #1

Fig. 5 shows the component architecture of Aislemonitor #1 ap-
plication. The application is driven by a Clock (TimerC) that peri-
odically generates an event. The EventTrigger component moni-
tors these events and performs two tasks that include reading data
from a file (sensor) and synchronizing data transfer so that only
one mote transfers data at one time. The Data application compo-
nent contains data structures for storing persistent data about the
people in the aisle and maintaining an accurate list of the people.
The SendMessage is the top-level component that takes data from
the Data component and transmits it to the destination. The Re-

ceiveMessage component collects the data as it arrives, and passes
it onto the Data component for further processing. The directed
connections in the figure represent method invocations in each
component.

5.2.2 Aislemonitor #2

The functional graph of Aislemonitor #2 is similar to that of
Aislemonitor #1. However, Aislemonitor 2 includes additional es-
timation logic for handling the case where one of the motes shuts
down due to loss of power. This additional logic is incorporated in
alternate implementation of the ‘Data’, ‘SendMessage’, ‘Re-
ceiveMessage’, and ‘EventTrigger’ components.

We model these two alternate configurations of the Aislemonitor
application in the GRATISPlus modeling environment. Different
implementations of the ‘Data’, ‘SendMessage’, ‘ReceiveMessage’
and ‘EventTrigger’ components are modeled as alternate modules
within groups of the same name. The power constraint is modeled
as a condition in the top-level Aislemonitor configuration with the
following OCL expression: self.power < P, where P is a parameter
that is dependent on the current available battery power. The
GCM updates the value of P, based on the input from the local
monitors and when the available power reduces below a threshold,
it triggers a reevaluation of the design space and possible recon-
figuration.

Functional Graph of the Aislemonitor #1 Application
Main
TOSEIM Executable T
I System Cempenent
StdTontrdl StdControl
- T Timer
ReadFile.h -
TOSSIM Compenent » EventTrgger
Application Component
Datafcecess
InpCutput
r
Receiveldessage - 3
Application Component p SendMessage
Tiatadccess Application Component
3
¥y ¥
Data
Application Component IntOutput

Figure 5. Component architecture of Aislemonitoring

When triggered by the GCM, The GRATISPlus to DESERT map-
per converts these models into DESERT’s input representation.
DESERT then evaluates the power constraint. The power usage of
the second configuration is low because it can work with fewer
motes, and therefore the power constraint (with a lowered value of
P) results in the selection of the second configuration. The output
of DESERT is used to create a GRATIS model, where the Groups
in the GRATISPlus model are replaced with the selected Module.
The GRATIS generator then converts the new model into TinyOS
configuration code. Currently, the reconfiguration is executed by
manually stopping and restarting the tracking application.

5.3 Performance Evaluation

We tested the performance of the tracking application with and
without reconfiguration for four test cases. Each test case included
data for three people walking in one direction with varying
speeds. The data was generated for 30 seconds over 65 feet of the
aisle assuming eight uniformly spaced motes. One of the motes
was shut down between 8 to 9 seconds after the start of the simu-
lation, thus simulating a low power condition. Using Aislemonitor
#1 it was not possible to detect any people in the field of view of
the affected mote and we had to switch to Aislemonitor #2. Two
types of errors were encountered: (i) People Missed: As one of the
motes shut down, people present only in its field of view are not
detected, and (ii) People double counted: The tracking algorithm
estimates a person in the field of view of the affected mote while
he/she has crossed to a neighboring mote.

Mote 2 was shut down in each of the test cases. Fig. 6 shows the
errors that occurred computed by summing up “people missed”
and “people double counted” over the simulation interval.
Aislemonitor #1 encountered 27 total errors and all of these were
due to missed detection of people. Aislemonitor #2 reduces the
“people missed” errors to 10. However, it generated 4 errors due
to “people double counted”. These errors were generated due to
the imperfect nature of the algorithm used to estimate the position
of people in the range of the disabled node. Overall, without re-
configuration we had 7.5% errors while with reconfiguration 3.8%

erTorS.
Errors Comparison |0 Double Counting
Bl People Missed

30
25
20

No. of

Errors
10

Without
Reconfiguration

With Reconfiguration

Figure 6. Distribution of Errors in Aislemonitor #1
and Aislemonitor #2

6. DISCUSSION

We presented an approach for constraint-guided software recon-
figuration in sensor networks. Our approach requires monitoring
the system requirements expressed as formal constraints. These
constraints drive the reconfiguration process that takes place in a
base station that can communicate to all the sensor nodes. We
have demonstrated our approach using simulation results for a
simple one-dimensional tracking problem. While the modeling,
design-space exploration and reconfiguration tools running on the
base station are implemented and tested, implementation of the
reconfiguration infrastructure on the motes remains to be done.
Although the reconfiguration is achieved manually in our testing
implementation, we have demonstrated its advantages. The Re-
configurator component, while relatively sophisticated, does not
seem to pose theoretical challenges. However there are additional
challenges that need to be addressed. Sensor networks operate in
dynamic environments and hence applications must be reconfig-
ured relatively fast. Characterization of worst-case time bounds
for the reconfiguration is subject to future research. Robustness of
the reconfiguration method is also a significant challenge. In our
work, so far, we have assumed static connectivity, which is a very
strong requirement. In practice, connectivity will affect the
method and especially, the time needed for all the nodes to com-
plete the reconfiguration. The drawback of our approach, the ne-
cessity for different switching components for different interfaces,
arises because of the static nature of TinyOS. Currently, we inves-
tigate these issues by implementing our approach using a Linux-
based sensor network that allows dynamic reconfiguration.

7. ACKNOWLEDGMENTS

The authors would like to acknowledge the partial financial sup-
port by the Xerox University Affairs Committee, the DARPA
IXO MoBIES program, and the DARPA IXO NEST program.

8. REFERENCES

[1] Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom
G., Sprinkle J., Karsai G.: “Composing Domain-Specific De-
sign Environments,” Computer, pp. 44-51, November, 2001.

[2] Blickle T., Teich J., and Thiele L: “System-Level Synthesis
Using Evolutionary Algorithms.” Design Automation for
Embedded Systems, vol 3, pp 23-58, 1998.

[3] Ledeczi A., Davis D., Neema S., Agrawal A.: “Modeling
Methodology for Integrated Simulation of Embedded Sys-
tems.” ACM Transactions on Modeling and Computer
Simulation, vol 13(1), pp 82-103, January 2003.

[4] Eames B., Bapty T., Neema S., Abbott B., Chhokra K. :
“Model Integrated Design Toolset for Polymorphous Com-
puter-Based Systems,” ECBS, pp 72-79, Huntsville AL,
April 7, 2003.

[S] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad S.:
“Model Integrated Tools for the Design of Dynamically Re-
configurable Systems,” VLSI Design, vol 10(3) pp 281-306,
2000.

[6] Neema S., Sztipanovits J., Karsai G., Butts, K. : “Constraint-
Based Design-Space Exploration and Model Synthesis,”
LNCS 2855, pp 290-305, Sept 2003.

[71 Fromherz M. and Conley J., Issues in Reactive Constraint
Solving. In: Workshop on Concurrent Constraint Program-
ming for Time Critical Applications - COTIC 97, CP'97,
Linz, Austria, Nov. 1997.

[8] Laddaga R.: “Active Software,” in Robertson P., Shrobe H.,
Laddaga R. (eds.): Self-Adaptive Software, LNCS 1936,
Springer Verlag, February 2001.

[9] Hill J.,, Culler D.: "Mica: A Wireless Platform for Deeply
Embedded Networks", IEEE Micro., vol. 22(6), Nov/Dec
2002, pp 12-24.

[10] Mainwaring A., Polastre J., Szewczyk R., Culler D.: “Wire-
less sensor networks for habitat monitoring”, ACM Interna-
tional Workshop on Wireless Sensor Networks and Applica-
tions, June 2002.

[11] Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister
K.: “System Architecture Direction for Networked Sensors”,
ACM SIGPLAN Notices, vol. 35(11), Nov 2000, pp 93-104.

[12] Volgyesi P., Ledeczi A.: “Component-Based Development
of Networked Embedded Applications,” 28th Euromicro
Conference, Component-Based Software Engineering Track,
Dortmund, Germany, September, 2002.

[13] Bryant R.: “Symbolic Boolean manipulation with ordered bi-
nary-decision diagrams,” ACM Computing Surveys, Volume
24, Issue 3, September 1992.

[14] Neema, S.: “Design Space Representation and Management
for Embedded Systems Synthesis,” Technical Report, ISIS-
01-203, February 2001.

[15] http://www.mozart-0z.org/

[16] Levis P., Lee N., Welsh M., Woo, Culler D.: “TOSSIM: Ac-
curate and Scalable Simulation of Entire TinyOS Applica-
tions”, ACM SensSys 2003, Nov. 2003.

[17] Warner J. B., Kleppe A. G.: “The Object Constraint Lan-
guage: Precise Modeling With Uml,” Addison-Wesley, 1999.

[18] Mitchell S., Naguib H., Coulouris G., Kindberg T.: “A QOS
Support Framework for Dynamically Reconfigurable Multi-
media Applications.” 2nd IFIP International Working Con-
ference on Distributed Applications and Interoperable Sys-
tems (DAIS '99), Helsinki, Finland, June 1999.

