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Abstract—This paper addresses the problem of resilient in-
network consensus in the presence of misbehaving nodes. Secure
and fault-tolerant consensus algorithms typically assume knowl-
edge of nonlocal information; however, this assumption is not
suitable for large-scale dynamic networks. To remedy this, we
focus on local strategies that provide resilience to faults and
compromised nodes. We design a consensus protocol based on
local information that is resilient to worst-case security breaches,
assuming the compromised nodes have full knowledge of the
network and the intentions of the other nodes. We provide
necessary and sufficient conditions for the normal nodes to
reach asymptotic consensus despite the influence of the mis-
behaving nodes under different threat assumptions. We show
that traditional metrics such as connectivity are not adequate
to characterize the behavior of such algorithms, and develop a
novel graph-theoretic property referred to as network robustness.
Network robustness formalizes the notion of redundancy of direct
information exchange between subsets of nodes in the network,
and is a fundamental property for analyzing the behavior of
certain distributed algorithms that use only local information.

Index Terms—Consensus; In-Network Computation; Robust
Networks; Resilience; Byzantine; Adversary; Distributed Algo-
rithms.

I. INTRODUCTION

ENGINEERED systems have undergone a paradigm shift
from centralized to distributed, propelled by advances

in networking and low-cost, high performance embedded
devices. These advances have enabled a transition from end-to-
end routing of information in large-scale networked systems to
in-network computation of aggregate quantities of interest [3].
In-network computing offers certain performance advantages,
including reduced latency, smaller communication overhead,
and greater robustness to node and link failures.

A fundamental challenge of in-network computation is that
the quantities of interest must be calculated using only local
information, i.e., information obtained by each node through
sensor measurements, calculations, or communication only
with neighbors in the network. Another important challenge
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is that large-scale distributed systems have many potential
vulnerable points for failures or attacks. To obtain the desired
computational results, it is important to design the in-network
algorithms to be able to withstand the compromise of a subset
of the nodes and still ensure some notion of correctness
(possibly at a degraded level of performance). We refer to
such a networked system as being resilient to adversaries.
Given the growing threat of malicious attacks in large-scale
cyber-physical systems, this is an important and challenging
problem [4].

One of the most important objectives in networked sys-
tems is to reach consensus on a quantity of interest [5]–
[8]. Consensus is fundamental to diverse applications such as
data aggregation [9], distributed estimation [10], distributed
optimization [11], distributed classification [12], and flock-
ing [13]. Reaching consensus (and more generally, trans-
mitting information) resiliently in the presence of faulty or
misbehaving nodes has been studied extensively in distributed
computing [5], [14]–[18], communication networks [19], [20],
and mobile robotics [21]–[23]. Among other things, it has
been shown that given F (worst-case) adversarial nodes,
there exists a strategy for these nodes to disrupt consensus
if the network connectivity1 is 2F or less. Conversely, if
the network connectivity is at least 2F + 1, then there exist
strategies for the normal nodes to use that ensure consensus
is reached (under the local broadcast model of communica-
tion) [5], [24], [25]. However, these consensus algorithms
either require that normal nodes have at least some nonlocal
information (e.g., knowledge of multiple independent paths in
the network between themselves and other nodes) or assume
that the network is complete, i.e., all-to-all communication or
sensing [14], [21]–[23], [26]. Moreover, these algorithms tend
to be computationally expensive. Therefore, there is a need for
resilient consensus algorithms that have low complexity and
operate using only local information (i.e., without knowledge
of the network topology and the identities of non-neighboring
nodes). A key challenge is to characterize fundamental topo-
logical properties that allow the normal nodes to compute an
appropriate consensus value, despite the influence of misbe-
having nodes.

The faulty or misbehaving nodes can be characterized
by threat models and scope of threat assumptions. Exam-
ples of fault or threat models include non-colluding [25],
malicious [24]–[26], Byzantine [14], [21], [27], [28], or

1The network connectivity is defined as the smaller of the two following
values: (i) the size of a minimal vertex cut and (ii) n − 1, where n is the
number of nodes in the network.
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crashed [21], [22] nodes. Typically, the scope of the faults or
threats is assumed to be bounded by a constant, i.e., at most
F out of n nodes fail or are compromised. We refer to this
as the F -total model. Alternatively, the scope may be local;
e.g., at most F neighbors of any normal node fail (F -local
model), or at most a fraction f of neighbors are compromised
(f -fraction local model).

A. Previous Work on Consensus With Only Local Information

In [29], the authors introduced the Approximate Byzantine
Consensus problem, in which the normal nodes are required
to achieve approximate agreement2 (i.e., they should converge
to a relatively small convex set contained in the convex hull of
their initial values) in the presence of F -total Byzantine faults
in finite time. They consider only complete networks (where
there is a direct connection between every pair of nodes), and
they propose the following algorithm: each node disregards
the largest and smallest F values received from its neighbors
and updates its state to be the average of a carefully chosen
subset of the remaining values. This algorithm was extended
to a family of algorithms, named the Mean-Subsequence-
Reduced (MSR) algorithms, in [30]. Although the research on
Approximate Byzantine Consensus for complete networks is
mature, there are few papers that have attempted to analyze
this algorithm in more general topologies [31], and even then,
only certain special networks have been investigated.

Recently, we have studied resilient algorithms in the pres-
ence of misbehaving nodes [32], [33]. In [26], we proposed
a continuous-time variation of the MSR algorithms, named
the Adversarial Robust Consensus Protocol (ARC-P), to solve
asymptotic consensus under the F -total malicious model. The
results of [26] were extended to both malicious and Byzantine
threat models in networks with constrained information flow
and dynamic network topology in [27]. The sufficient condi-
tions studied in [27] are stated in terms of in-degrees and out-
degrees of nodes in the network and are shown to be sharp, i.e.,
if the conditions are relaxed, even minimally, then there are
examples in which the relaxed conditions are not sufficient. In
[2], we generalized the MSR algorithm to the Weighted-Mean-
Subsequence-Reduced (W-MSR) algorithm and studied general
distributed algorithms with F -local malicious adversaries.

In a recent paper, developed independently of our work,
Vaidya et al. have characterized tight conditions for resilient
consensus using the MSR algorithm when the threat model
is Byzantine and the scope is F -total [28]. The network
constructions used in [28] are very similar to the robust
digraphs presented here. In particular, the networks in [28] also
require redundancy of direct information exchange between
subsets of nodes in the network.

In contrast to the deterministic approach taken here, gossip
algorithms have been studied for in-network computation of
aggregate functions such as sums, averages, and quantiles [9].
In such algorithms, each node chooses at random a single
neighbor to communicate with in each round. This scheme
limits the required computational, communication, and energy
resources, and provides some robustness against time-varying

2If the network is synchronous, and if one allows t → ∞, then approximate
agreement is equivalent to asymptotic consensus.

topologies and random node and link failures [34]. However,
we are not aware of any work that studies the resilience of
gossip-based algorithms to malicious attacks.

B. Contributions

In this paper, we show that traditional graph theoretic prop-
erties such as connectivity and minimum degree, which have
played a vital role in characterizing the resilience of distributed
algorithms (see [5], [24]), are not adequate when the nodes
make purely local decisions (i.e., without knowing nonlocal
aspects of the network topology). Instead, we introduce a novel
topological property, referred to as network robustness, and
show that this concept is the key property for reasoning about
the ability of purely local algorithms to succeed. In particular,
we provide a comprehensive characterization of the network
topologies where algorithms such as W-MSR (which uses only
local information and operates in synchronous networks) can
succeed despite the presence of a broad class of adversaries.
We establish results for both malicious and Byzantine threats,
where the scope is F -total, F -local, and f -fraction local, and
the network is time-invariant or time-varying. For the case of
time-invariant networks, we provide, for the first time, a tight
condition for the W-MSR algorithm to succeed under the F -
total malicious model. Furthermore, we give tight conditions
for F -local and F -total Byzantine threats (the proof for the F -
total Byzantine model is different than the proof given in [28],
and is stated for the more general W-MSR algorithm and in
terms of network robustness). We prove separate necessary
and sufficient conditions for the W-MSR algorithm under
the F -local malicious, f -fraction local malicious, and f -
fraction local Byzantine threat models. For all threat models,
we provide sufficient conditions for the case of time-varying
networks.

In addition to the results on resilient asymptotic consensus,
we also examine properties of robust digraphs. We demon-
strate the connectivity and degree properties of robust di-
graphs, explore the robustness maintained after edge removal,
and describe how to compare the relative robustness of dif-
ferent digraphs. Finally, we provide a method that enables the
construction of robust networks and show that the preferential
attachment mechanism for generating complex networks is a
special case of this method (and therefore produces robust
networks).

The rest of the paper is organized as follows. Section II
introduces the problem of resilient consensus. Section III
presents the W-MSR algorithm. Section IV demonstrates
the inadequacy of connectivity as a metric to analyze the
behavior of the W-MSR algorithm, and formally introduces
the notion of network robustness. The main results are given
in Section V. A simulation example is presented in Section VI.
In Section VII, we discuss properties of network robustness
and provide a construction for robust networks. Finally, some
conclusions are given in Section VIII.

C. Notation and Graph Terminology

Throughout this paper, we denote the set of integers by Z

and the set of real numbers by R. The set of integers greater
than or equal to some integer q ∈ Z is denoted Z≥q . The
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cardinality of a set S is denoted by |S|. Given sets S1,S2, the
reduction of S1 by S2 is denoted S1\S2 = {x ∈ S1 : x /∈ S2}.

A finite simple directed graph, or just digraph, is denoted
D = (V , E), in which V is the node set and E ⊂ V ×V is the
directed edge set. With a slight abuse of terminology, we often
refer to the network and the digraph that models the topology
of the network synonymously. The underlying graph G(D) is
defined by replacing directed edges of D by undirected ones,
resulting in the edge set EG . A digraph D′ = (V ′, E ′) is a
subdigraph of D, written D′ ⊆ D, if V ′ ⊆ V and E ′ ⊆ E .

A path is a sequence of distinct vertices i0, i1, . . . , ik such
that (ij , ij+1) ∈ E , j = 0, 1, . . . , k − 1. We say that D
is strongly connected if for every i, j ∈ V , there exists a
path starting at i and ending at j. If the underlying graph
is connected, then D is weakly connected. Alternatively, if the
underlying graph is disconnected, then D is disconnected. A
digraph has a rooted out-branching if there exists a node r,
the root, such that for each i ∈ V , there exists a path from r
to i.

II. PROBLEM FORMULATION

Consider a time-varying network modeled by the digraph
D[t] = (V , E [t]), where V = {1, ..., n} is the node set and
E [t] ⊂ V × V is the directed edge set at time-step t ∈ Z≥0.
The node set is partitioned into a set of normal nodes N
and a set of adversary nodes A which is unknown a priori
to the normal nodes. Each directed edge (j, i) ∈ E [t] models
information flow and indicates that node i can be influenced
by (or receive information from) node j at time-step t. The
set of in-neighbors, or just neighbors, of node i at time-step
t is defined as Vi[t] = {j ∈ V : (j, i) ∈ E [t]} and the (in-)
degree of i is denoted di[t] =|Vi[t]|. Likewise, the set of out-
neighbors of node i at time-step t is defined as Vout

i [t] = {j ∈
V : (i, j) ∈ E [t]}. Because each node has access to its own
state at time-step t, we also consider the inclusive neighbors
of node i, denoted Ji[t] = Vi[t]∪{i}. Time-invariant networks
are represented by dropping the dependence on t.

A. Update Model

Suppose that each node i ∈ N begins with some private
value xi[0] ∈ R (which could represent a measurement,
optimization variable, vote, etc.). The nodes interact syn-
chronously by conveying their value to (out-)neighbors in the
network. Each normal node updates its own value over time
according to a prescribed rule, which is modeled as

xi[t+ 1] = fi({xi
j [t]}), j ∈ Ji[t], i ∈ N , t ∈ Z≥0,

where xi
j [t] is the value sent from node j to node i at time-step

t, and xi
i[t] = xi[t]. The update rule fi(·) can be an arbitrary

function, and may be different for each node, depending
on its role in the network. These functions are designed
a priori so that the normal nodes compute some desired
function. However, some of the nodes may not follow the
prescribed strategy if they are compromised by an adversary.
Such misbehaving nodes threaten the group objective, and
it is important to design the fi(·)’s in such a way that the
influence of such nodes can be eliminated or reduced without
prior knowledge about their identities.

B. Threat Model

Definition 1: A node i ∈ A is said to be Byzantine if it
does not send the same value to all of its neighbors at some
time-step, or if it applies some other function f ′

i(·) at some
time-step.
Definition 2: A node i ∈ A is said to be malicious if it

sends xi[t] to all of its neighbors at each time-step, but applies
some other function f ′

i(·) at some time-step.
Note that both malicious and Byzantine nodes are allowed

to update their states arbitrarily (perhaps colluding with other
malicious or Byzantine nodes to do so). The only difference
is in their capacity for duplicity. If the network is realized
through sensing or broadcast communication, it is natural to
assume that the out-neighbors receive the same information,
thus motivating the definition of a malicious node. If the
network is point-to-point, however, Byzantine behavior is
possible. Note that all malicious nodes are Byzantine, but not
vice versa. When we do not need to explicitly distinguish
between Byzantine and malicious threats, we simply say those
nodes are misbehaving.

C. Scope of Threats

Having defined the types of misbehavior in the system,
it is necessary to define the number of misbehaving nodes.
While there are various stochastic models that could be used to
formalize the scope of threats, we use a deterministic approach
and consider upper bounds on the number of compromised
nodes either in the network (F -total) or in each node’s
neighborhood (F -local). To account for varying degrees of
different nodes, we also introduce a fault model that considers
an upper bound on the fraction of compromised nodes in any
node’s neighborhood.
Definition 3 (F -total set): A set S ⊂ V is F -total if it

contains at most F nodes in the network, i.e., |S| ≤ F ,
F ∈ Z≥0.
Definition 4 (F -local set): A set S ⊂ V is F -local if it

contains at most F nodes in the neighborhood of the other
nodes for all t, i.e., |Vi[t]

⋂S| ≤ F , ∀i ∈ V \ S, ∀t ∈ Z≥0,
F ∈ Z≥0.
Definition 5 (f -fraction local set): A set S ⊂ V is f -

fraction local if it contains at most a fraction f of nodes in the
neighborhood of the other nodes for all t, i.e., |Vi[t]

⋂S| ≤
f |Vi[t]|, ∀i ∈ V \ S, ∀t ∈ Z≥0, 0 ≤ f ≤ 1.

It should be noted that in time-varying network topologies,
the local properties defining an F -local set (or an f -fraction
local set) must hold at all time instances. These definitions
facilitate the following scope of threat models.
Definition 6: A set of adversary nodes is F -totally

bounded, F -locally bounded or f -fraction locally bounded
if it is an F -total set, F -local set or f -fraction local set,
respectively. We refer to these threat scopes as the F -total,
F -local, and f -fraction local models, respectively.
F -totally bounded faults have been studied in distributed

computing [5], [14], [28] and mobile robotics [21]–[23] for
both stopping (or crash) failures and Byzantine failures. The
F -locally bounded fault model has been studied in the context
of fault-tolerant broadcasting [35], [36]. However, to the best
of our knowledge, there are no prior works discussing the f -
fraction local model; our investigation of this model is inspired
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by ideas pertaining to contagion in social and economic
networks [37], where a node will accept some new information
(behavior or technology) if more than a certain fraction of its
neighbors has adopted it. However, these previous works do
not consider faulty or malicious behavior, and our definition
is a natural extension to the existing interpretations.

D. Resilient Asymptotic Consensus

Given the threat model and scope of threats, we formally
define resilient asymptotic consensus. Let M [t] and m[t] be
the maximum and minimum values of the normal nodes at
time-step t, respectively.
Definition 7 (Resilient Asymptotic Consensus):The normal

nodes are said to achieve resilient asymptotic consensus in
the presence of (a) F -totally bounded, (b) F -locally bounded,
or (c) f -fraction locally bounded misbehaving (Byzantine or
malicious) nodes if

• ∃L ∈ R such that limt→∞ xi[t] = L for all i ∈ N , and
• [m[0],M [0]] is an invariant set (i.e., the normal values

remain in the interval for all t),

for any choice of initial values. Whenever the scope of threat
is understood, we simply say that the normal nodes reach
asymptotic consensus.

The resilient asymptotic consensus problem has two impor-
tant conditions. First, the normal nodes must reach asymptotic
consensus in the presence of misbehaving nodes given a
particular threat model (e.g., malicious) and scope of threat
(e.g., F -total). This is a condition on agreement. Additionally,
it is required that the interval containing the initial values of
the normal nodes is an invariant set for the normal nodes;
this is a safety condition. This condition is important in safety
critical processes where the interval [m[0],M [0]] is known to
be safe. The agreement and safety conditions, when combined,
imply a third condition on validity: the consensus quantity that
the values of the normal nodes converge to must lie within the
range of initial values of the normal nodes.

The validity condition is reasonable in applications where
any value in the range of initial values of normal nodes is
acceptable to select as the consensus value. For instance,
consider a large sensor network where every sensor takes a
measurement of its environment, captured as a real number.
Suppose that at the time of measurement, all values taken
by correct sensors fall within a range [a, b], and that all
sensors are required to come to an agreement on a common
measurement value. If the range of measurements taken by
the normal sensors is relatively small, it will likely be the
case that reaching agreement on a value within that range will
form a reasonable estimate of the measurements taken by all
sensors. However, if a set of malicious nodes is capable of
biasing the consensus value outside of this range, the error in
the measurements could be arbitrarily large.

More generally, suppose the nodes are trying to distribu-
tively minimize

∑
hi(θ), where each of the hi’s is a local

convex function and θ is the optimization variable. If the initial
value of each node i represents the value of θ that minimizes
hi, a convex combination of these initial values will represent
an estimate of the optimal θ, within some bounded error.
On the other hand, if an adversary is capable of biasing the

consensus value arbitrarily, the resulting value of the objective
function will also be arbitrarily far away from its minimum
value. One can formulate similar motivating examples for the
validity condition in other applications as well; for instance, a
swarm of robots that are trying to flock should not be pulled
in arbitrary directions by a malicious agent in the network.

III. CONSENSUS ALGORITHM

While there are various approaches to facilitate consensus,
a class of linear algorithms have attracted significant interest
in recent years [6], [38], due to their applicability in a variety
of contexts. In such strategies, at time t, each node senses or
receives information from its neighbors, and changes its value
according to

xi[t+ 1] =
∑

j∈Ji[t]

wij [t]x
i
j [t], (1)

where wij [t] is the weight assigned to node j’s value by node
i at time-step t. The above strategy is the so-called Linear
Consensus Protocol (LCP).

Different conditions have been reported in the literature to
ensure asymptotic consensus is reached [7], [13], [39]–[41].
In discrete time, it is common to assume that there exists a
constant α ∈ R, 0 < α < 1 such that all of the following
conditions hold:

• wij [t] = 0 whenever j 	∈ Ji[t], i ∈ N , t ∈ Z≥0;
• wij [t] ≥ α, ∀j ∈ Ji[t], i ∈ N , t ∈ Z≥0;
•

∑n
j=1 wij [t] = 1, ∀i ∈ N , t ∈ Z≥0.

Given these conditions, a necessary and sufficient condition
for reaching asymptotic consensus in time-invariant networks
is that the digraph has a rooted out-branching, also called
a rooted directed spanning tree [38]. The case of dynamic
networks is not quite as straightforward. In this case, under
the conditions stated above, a sufficient condition for reaching
asymptotic consensus is that there exists a uniformly bounded
sequence of contiguous time intervals such that the union of
digraphs across each interval has a rooted out-branching [40].
Recently, a more general condition referred to as the infinite
flow property has been shown to be both necessary and
sufficient for asymptotic consensus for a class of discrete-time
stochastic models [42]. Finally, the lower bound on the weights
is needed because there are examples of asymptotically van-
ishing weights in which consensus is not reached [43].

Given a fixed, bidirectional network topology, the selection
of the optimal weights in (1) with respect to the speed of
the consensus process can be done by solving a semidefinite
program (SDP) [39]. However, this SDP is solved at design
time with global knowledge of the network topology. A
simple suboptimal choice of weights that requires only local
information is to let wij [t] = 1/(1 + di[t]) for j ∈ Ji[t].

One problem with the linear update given in (1) is that
it is not resilient to misbehaving nodes. In fact, it was
shown in [13], [44] that a single ‘leader’ node can cause
all agents to reach consensus on an arbitrary value of its
choosing (potentially resulting in a dangerous situation in
physical systems) simply by holding its value constant. Thus,
by themselves, the dynamics given by (1) do not facilitate
resilient asymptotic consensus for any of the fault models.
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We now describe a simple modification to the update rule,
and then provide a comprehensive characterization of network
topologies in which resilient asymptotic consensus is reached
under such dynamics.

A. Description of W-MSR

At every time-step t, each normal node i obtains the values
of other nodes in its neighborhood. At most F of node i’s
neighbors may be misbehaving; however, node i is unsure of
which neighbors may be compromised. To ensure that node
i updates its value in a safe manner, we consider a protocol
where each node removes the extreme values with respect to
its own value. More specifically:

1) At each time-step t, each normal node i obtains the values
of its neighbors, and forms a sorted list.

2) If there are less than F values strictly larger than its own
value, xi[t], then normal node i removes all values that
are strictly larger than its own. Otherwise, it removes
precisely the largest F values in the sorted list (breaking
ties arbitrarily). Likewise, if there are less than F values
strictly smaller than its own value, then node i removes
all values that are strictly smaller than its own. Otherwise,
it removes precisely the smallest F values.

3) Let Ri[t] denote the set of nodes whose values were
removed by normal node i in step 2 at time-step t. Each
normal node i applies the update

xi[t+ 1] =
∑

j∈Ji[t]\Ri[t]

wij [t]x
i
j [t], (2)

where the weights wij [t] satisfy the conditions stated
above, but with Ji[t] replaced by Ji[t] \ Ri[t].3

To accommodate the f -fraction local model, the parameter
F in step 2 above is replaced by Fi = �fdi[t]�. As a matter
of terminology, we refer to the bound on the number (or
fraction) of larger or smaller values that could be thrown away
as the parameter of the algorithm. Above, the parameter of
W-MSR with the F -local and F -total models is F , whereas
the parameter with the f -fraction local model is f , and the
meaning of the parameter will be clear from the context.

Observe that the set of nodes removed by normal node i,
Ri[t], is possibly time-varying. Hence, even if the underlying
network topology is fixed, the W-MSR algorithm effectively
induces switching behavior, and can be viewed as the linear
update of (1) with a specific rule for state-dependent switching
(the rule given in step 2).

The above algorithm is extremely lightweight, and does not
require any normal node to have any knowledge of the network
topology or of the identities of non-neighbor nodes. Given
these highly desirable properties, the question that we answer
in this paper is: in what networks will the above algorithm
facilitate resilient asymptotic consensus?

B. Use of Related Algorithms in Previous Work

As mentioned in the introduction, the use of similar algo-
rithms that remove extreme values and then form an average

3In this case, a simple choice for the weights is to let wij [t] = 1/(1 +
di[t]− |Ri[t]|) for j ∈ Ji[t] \ Ri[t].

from a subset of the remaining values have been studied
for decades. In [29], functions that perform this type of
operation are referred to as approximation functions, and
both synchronous and asynchronous algorithms are studied
that use these approximation functions in complete networks
for resilience to F -total Byzantine faults. These approxima-
tion functions are used in the family of Mean-Subsequence-
Reduced (MSR) algorithms [30]. There are a few key differ-
ences between the operations used in the W-MSR algorithm
and the MSR algorithm of [30]. First, W-MSR does not
always remove the largest and smallest F values as in the
MSR algorithm [30]. Instead, only the extreme values that are
strictly larger or strictly smaller than the given node’s value
are removed. Since the node’s own value may be one of the
F extreme values, the MSR algorithm may throw away this
useful (correct) information. Second, W-MSR uses all values
retained after removing the extreme values. MSR, on the other
hand, may select only a subsequence of the remaining values
to use in the update. Finally, MSR averages the remaining
values instead of allowing for weighted averages as in W-
MSR.

MSR algorithms have also been used for Byzantine point
convergence of mobile robots in complete networks [23].
Besides Byzantine faults, some works also consider other
threat models [30]. However, few papers have addressed
the convergence of MSR algorithms in less restrictive (non-
complete) networks. Some exceptions include [31], [45], [46].
In [31], the authors studied local convergence (convergence of
a subset of nodes) in undirected regular graphs4; the results
are extended to asynchronous networks in [46] and global
convergence of a class of undirected regular graphs, named
Partially Fully Connected Networks (PFCN), in [45]. More
recently, [28] provides necessary and sufficient conditions on
the network topology required for a special case of the MSR
algorithm (which retains all of the values after removing
the extreme ones) to achieve consensus in the presence of
F -total Byzantine faults. In the following sections, we will
develop a novel topological property and show that this
property is essential for studying MSR (and more generally,
W-MSR) algorithms in arbitrary networks for the broad class
of adversarial models described in Section II.

Finally, it is worth noting the relationship between the W-
MSR algorithm and robust consensus algorithms designed to
withstand outliers [47], [48]. The problem of robust consensus
to outliers does not assume a threat model, such as malicious
or Byzantine nodes. Instead, some measurements may be
statistical outliers (caused by noise) and the goal is to reach
consensus on the measurements in a manner that reduces the
error introduced by the outliers. In these works the nodes with
outlier measurements are cooperative in the consensus process.
Therefore, such techniques are not designed to work in the
presence of misbehaving nodes. Furthermore, the W-MSR al-
gorithm will also handle the case where the misbehaving nodes
change their initial values, but behave normally otherwise.

4A regular graph is a graph where each vertex has the same number of
neighbors.
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Fig. 1. Example of a 5-connected graph satisfying Prop. 1 with F = 2.

IV. ROBUST NETWORK TOPOLOGIES

Traditionally, network connectivity has been the key metric
for studying robustness of distributed algorithms because it
formalizes the notion of redundant information flow across the
network through independent paths. Due to the fact that each
independent path may include multiple intermediate nodes,
network connectivity is well-suited for studying resilient dis-
tributed algorithms that assume such nonlocal information
is available (for example, by explicitly relaying information
across multiple hops in the network [5], by ‘inverting’ the dy-
namics on the network to recover the needed information [24],
[25], or by resiliently encoding information along multiple
paths [20]). However, when the nodes in the network use only
local information (as in W-MSR), the following proposition
suggests that connectivity is no longer a promising metric.
Proposition 1: For any n, F ∈ Z>0 with F ≤ �n

2 �, there
exists a graph with connectivity κ = �n

2 �+F −1 in which W-
MSR with parameter F does not ensure asymptotic consensus.

The proof of Proposition 1 can be found in the Appendix.
Figure 1 illustrates an example of this kind of graph with
n = 8, F = 2, and κ = 5. In this graph, there are two cliques
(complete subgraphs), X = K4 and Y = K4, where Kn is
the complete graph on n nodes. Each node in X has exactly
F = 2 neighbors in Y , and vice versa. One can see that if
the initial values of nodes in X and Y are a ∈ R and b ∈ R,
respectively, with a 	= b, then asymptotic consensus is not
achieved whenever W-MSR is used with parameter F , even
in the absence of misbehaving nodes. This is because each
node views the values of its F neighbors from the opposing
set as extreme, and removes all of these values from its list.
The only remaining values for each node are from its own set,
and thus no node ever changes its value.

The situation can be even worse in the more general case
of digraphs. Examples of digraphs are illustrated in [27] that
have minimum out-degree n− 2 and the underlying graph is
complete, yet W-MSR still cannot guarantee resilient asymp-
totic consensus. Thus, even a relatively large connectivity (or
minimum out-degree) in digraphs is not sufficient to guarantee
consensus of the normal nodes, indicating the inadequacy of
these traditional metrics to analyze the convergence properties
of W-MSR. Taking a closer look at the graph in Fig. 1, we
see that the reason for the failure of consensus is that no node
has enough neighbors in the opposite set; this causes every
node to throw away all useful information from outside of its
set, and prevents consensus. What is needed is a metric that
formalizes the notion of sufficient redundancy of information

flow directly to at least one node in a subset. To capture this
intuition, we develop a novel graph-theoretic property framed
in terms of reachable sets and network robustness [2].
Definition 8 (r-reachable set): Given a digraph D and a

nonempty subset S of nodes of D, we say S is an r-reachable
set if ∃i ∈ S such that |Vi \ S| ≥ r, where r ∈ Z≥0.
Definition 9 (p-fraction reachable set): Given a digraph D

and a nonempty subset S of nodes of D, we say S is a p-
fraction reachable set if ∃i ∈ S such that |Vi| > 0 and
|Vi \ S| ≥ p|Vi|, where 0 ≤ p ≤ 1. If |Vi| = 0 or |Vi \ S| = 0
for all i ∈ S, then S is 0-fraction reachable.

A set S is r-reachable (or p-fraction reachable) if it contains
a node that has at least r (or pdi�) neighbors outside of
S. The parameter r (or p) quantifies the redundancy of
information flow from nodes outside of S to some node inside
S. Intuitively, the r-reachability (or p-fraction reachability)
property captures the idea that some node inside the set
is influenced by a sufficiently large number of nodes from
outside the set. The above reachability property pertains to a
given set S. The following definitions generalize this notion
of redundancy to the entire network.
Definition 10 (r-robustness): A nonempty, nontrivial di-

graph D = (V , E) on n nodes (n ≥ 2) is r-robust, with
r ∈ Z≥0, if for every pair of nonempty, disjoint subsets of V ,
at least one of the subsets is r-reachable. By convention, if
D is empty or trivial (n ≤ 1), then D is 0-robust. The trivial
graph is also 1-robust.5

Definition 11 (p-fraction robustness): A nonempty, non-
trivial digraph D = (V , E) on n nodes (n ≥ 2) is p-fraction
robust, with 0 ≤ p ≤ 1, if for every pair of nonempty, disjoint
subsets of V , at least one of the subsets is p-fraction reachable.
If D is empty or trivial (n ≤ 1), then D is 0-fraction robust.

Note that the notions of robustness and fraction robustness
are similar to the concept of vertex expanders6 [49], [50].
However, the definition of vertex expanders only requires that
the whole set has sufficient neighbors outside the set; for this
reason, even a high expansion ratio may not guarantee that the
set contains some node that by itself has enough neighbors
outside the set. Thus, the concept of vertex expanders is not
applicable to characterize the network topology required to
succeed using the W-MSR algorithm.

The reason that pairs of nonempty, disjoint subsets of nodes
are considered in the definition of r-robustness can be seen
in the example of Fig. 1. If either X or Y were 3-reachable
(r = F +1 = 3), then at least one node would be sufficiently
influenced by a node outside its set (because each node only
removes up to F = 2 nodes that have values lower or higher
than its own). This would drive it away from the values of its
group, and thereby allow it to lead its group to the values of
the other set.

However, if there are misbehaving nodes in the network,
then the situation becomes more complex. For example, con-
sider the network modeled by the graph in Fig. 2. One can
verify that the graph is 3-robust by checking every possible

5The trivial graph is defined to be both 0-robust and 1-robust for consistency
with properties shown to hold for larger digraphs in Section VII.

6A digraph D = (V , E) is an r vertex expander if for all S ⊂ V of size at
most �n

2
�, the neighborhood V(S) = {j ∈ V \ S : ∃i ∈ S s.t. (j, i) ∈ E }

is of size at least r|S|.
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Fig. 2. A 3-robust graph in which sets X and Y are each 3-reachable. Nodes
2 and 8 are malicious (shown in grey).

pair of disjoint subsets, and confirming that at least one of
them is 3-reachable. Consider the disjoint subsets X and Y
shown in the figure, and note that both of them are 3-reachable
– nodes 2 and 8 each have three neighbors outside of their
respective sets. However, no other nodes in those two sets
have more than two neighbors outside their own set, and thus
nodes 2 and 8 are the only ones with access to sufficient
information outside their own set. Suppose these two nodes
2 and 8 are malicious (or Byzantine) and the initial values
of nodes in X and Y are a and b, respectively. Then, by
stubbornly maintaining their initial values, nodes 2 and 8 are
able to prevent consensus whenever the normal nodes use W-
MSR with parameter F = 2. One way to remedy this is to
require the whole network to be more robust. Another way
is to introduce another form of information redundancy by
specifying a minimum number of nodes that are sufficiently
influenced from outside of their set. In order to capture this
intuition, we define the following concept.

Definition 12 ((r, s)-reachable set): Given a digraph D and
a nonempty subset of nodes S, we say that S is an (r, s)-
reachable set if there are at least s nodes in S, each of which
has at least r neighbors outside of S, where r, s ∈ Z≥0; i.e.,
given X r

S = {i ∈ S : |Vi \ S| ≥ r}, then |X r
S | ≥ s.

An illustration of an (r, s)-reachable set of nodes is shown
in Fig. 3. Observe that, in general, a set S is (r, s′)-reachable,
for s′ ≤ s, whenever S is (r, s)-reachable. At one extreme,
whenever there are no nodes in S with at least r neighbors
outside of S, then S is only (r, 0)-reachable. At the other
extreme, S can be at most (r, |S|)-reachable. Also note
that r-reachability is equivalent to (r, 1)-reachability. Hence,
(r, s)-reachability strictly generalizes r-reachability, and better
quantifies the number of nodes with redundant information
flow from outside of their set. This additional specificity is
useful for defining a more general notion of robustness.

Definition 13 ((r, s)-robustness): A nonempty, nontrivial
digraph D = (V , E) on n nodes (n ≥ 2) is (r, s)-robust,
for nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for every
pair of nonempty, disjoint subsets S1 and S2 of V at least one
of the following holds (recall X r

Sk
= {i ∈ Sk : |Vi \ Sk| ≥ r}

for k ∈ {1, 2}):

(i) |X r
S1
| = |S1|;

(ii) |X r
S2
| = |S2|;

(iii) |X r
S1
|+ |X r

S2
| ≥ s.

By convention, if D is empty or trivial (n ≤ 1), then D is

Fig. 3. Illustration of an (r, s)-reachable set of nodes.

(0,1)-robust. If D is trivial, D is also (1,1)-robust.7

The definition of (r, s)-robustness aims to capture the idea
that “enough” nodes in every pair of nonempty, disjoint sets
S1,S2 ⊂ V have at least r neighbors outside of their respective
sets. To quantify what is meant by “enough” nodes, it is
necessary to take the maximal sr,k for which Sk is (r, sr,k)-
reachable for k ∈ {1, 2} (since Sk is (r, s′r,k)-reachable for
s′r,k ≤ sr,k). Since sr,k = |X r

Sk
|, condition (i) or (ii) means

that all nodes in Sk have at least r neighbors outside of
Sk. Given a pair S1,S2 ⊂ V such that 0 < |S1| < r and
S2 = V \ S1, there can be no more than |S1| nodes with
at least r neighbors outside of their set. Hence, conditions
(i) and (ii) quantify the maximum number of nodes with at
least r neighbors outside of their set for such pairs, and must
therefore be “enough”. Alternatively, if there are at least s
nodes with at least r neighbors outside of their respective sets
in the union S1∪S2, then condition (iii) is satisfied. For such
pairs S1,S2 ⊂ V , the parameter8 1 ≤ s ≤ n quantifies what
is meant by “enough” nodes.

In the next section, we will show that these concepts
we have proposed above are, in fact, the key properties
needed to characterize the performance of the class of local
filtering algorithms given by W-MSR. That is, sufficiently
robust digraphs guarantee resilient consensus.

V. RESILIENT CONSENSUS ANALYSIS

We start with the following result showing that W-MSR
always satisfies the safety condition for resilient asymptotic
consensus. Recall that M [t] and m[t] are the maximum
and minimum values of the normal nodes at time-step t,
respectively.
Lemma 1: Suppose each normal node updates its value

according to the W-MSR algorithm with parameter F under
the F -total or F -local Byzantine (or malicious) model, or
with parameter f under the f -fraction local Byzantine (or
malicious) model. Then, for each node i ∈ N , xi[t + 1] ∈
[m[t],M [t]], regardless of the network topology.

Proof: The proof is straightforward and follows directly
from the definitions and the facts that the values in Ji[t]\Ri[t]
used in the W-MSR update rule lie in the interval [m[t],M [t]]
and that the update rule in (2) is a convex combination of
these values.

7The trivial graph is defined to be both (0,1)-robust and (1,1)-robust for
consistency with properties shown to hold for larger digraphs in Section VII.

8Note that s = 0 is not allowed in (r, s)-robustness because in that case
any digraph on n ≥ 2 nodes satisfies the definition for any r ∈ Z≥0,
which subverts the interpretation of the parameter r. At the other extreme,
the maximal meaningful value of s is s = n since condition (iii) can never
be satisfied with s > n.
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Having guaranteed the safety condition, we now provide a
characterization of networks where the agreement condition
(and thus, the validity condition) will be satisfied for each of
the threat models introduced in Section II.

A. F -Total Malicious Model

The following result is one of the major contributions of
this paper and provides, for the first time, a necessary and
sufficient condition for the W-MSR algorithm to succeed under
the F-total malicious model.
Theorem 1: Consider a time-invariant network modeled by

a digraph D = (V , E) where each normal node updates
its value according to the W-MSR algorithm with parameter
F . Under the F -total malicious model, resilient asymptotic
consensus is achieved if and only if the network topology is
(F + 1, F + 1)-robust.

Proof: (Necessity) If D is not (F +1, F +1)-robust, then
there are nonempty, disjoint S1,S2 ⊂ V such that none of
the conditions (i) − (iii) hold. Suppose the initial value of
each node in S1 is a and each node in S2 is b, with a < b.
Let all other nodes have initial values taken from the interval
(a, b). Since |XF+1

S1
| + |XF+1

S2
| ≤ F , suppose all nodes in

XF+1
S1

and XF+1
S2

are malicious and keep their values constant.
With this assignment of adversaries, there is still at least one
normal node in both S1 and S2 since |XF+1

S1
| < |S1| and

|XF+1
S2

| < |S2|, respectively. Since these normal nodes remove
the F or less values of in-neighbors outside of their respective
sets, no consensus among normal nodes is reached.
(Sufficiency) Recall that N is the set of normal nodes, and

define N = |N |. Furthermore, define M [t] and m[t] to be
the maximum and minimum values of the normal nodes at
time-step t, respectively. We know from Lemma 1 that both
M [t] and m[t] are monotone and bounded functions of t and
thus each of them has some limit, denoted by AM and Am,
respectively. Note that if AM = Am, the normal nodes will
reach consensus. We will now prove by contradiction that this
must be the case.

Suppose that AM 	= Am (note that AM > Am by
definition). We can then define some constant ε0 > 0 such that
AM − ε0 > Am + ε0. At any time-step t and for any positive
real number εi, let XM (t, εi) = {i ∈ V : xi[t] > AM − εi},
which includes all normal and malicious nodes that have
values larger than AM − εi, and let Xm(t, εi) = {i ∈ V :
xi[t] < Am + εi}, which includes all normal and malicious
nodes that have values smaller than Am + εi. Note that
XM (t, ε0) and Xm(t, ε0) are disjoint, by the definition of ε0.

Fix ε < αN

1−αN ε0, which satisfies ε0 > ε > 0. Let tε be such
that M [t] < AM+ε and m[t] > Am−ε, ∀t ≥ tε (we know that
such a tε exists by the definition of convergence). Consider the
nonempty and disjoint sets XM (tε, ε0) and Xm(tε, ε0). Since
the network is (F + 1, F + 1)-robust and there are no more
than F malicious nodes in the network (F -total model), there
is a normal node in the union that has at least F +1 neighbors
outside of its set. Without loss of generality, suppose normal
node i ∈ XM (tε, ε0)∩N has at least F +1 neighbors outside
of XM (tε, ε0). By definition, these neighbors have values at
most equal to AM − ε0, and at least one of these values will
be used by node i (since node i removes at most F values

lower than its own value). Note that at each time-step, every
normal node’s value is a convex combination of its own value
and the values it uses from its neighbors, and each coefficient
in the combination is lower bounded by α. Since the largest
value that node i will use at time-step tε is M [tε], placing the
largest possible weight on M [tε] produces

xi[tε + 1] ≤ (1− α)M [tε] + α(AM − ε0)

≤ (1− α)(AM + ε) + α(AM − ε0)

≤ AM − αε0 + (1− α)ε.

Note that this upper bound also applies to the updated value
of any normal node that is not in XM (tε, ε0), because such
a node will use its own value in its update. Similarly, if
j ∈ Xm(tε, ε0) ∩ N has at least F + 1 neighbors outside
of Xm(tε, ε0), then xj [tε+1] ≥ Am+αε0 − (1−α)ε. Again,
any normal node that is not in Xm(tε, ε0) will have the same
lower bound.

Define ε1 = αε0−(1−α)ε, which satisfies 0 < ε < ε1 < ε0.
Consider the sets XM (tε + 1, ε1) and Xm(tε + 1, ε1). Since
at least one of the normal nodes in XM (tε, ε0) decreases at
least to AM −ε1 (or below), or one of the nodes in Xm(tε, ε0)
increases at least to Am+ ε1 (or above), it must be that either
|XM (tε+1, ε1)∩N| < |XM (tε, ε0)∩N| or |Xm(tε+1, ε1)∩
N| < |Xm(tε, ε0) ∩ N|, or both. Since ε1 < ε0, XM (tε +
1, ε1) and Xm(tε + 1, ε1) are still disjoint. For j ≥ 1, define
εj recursively as εj = αεj−1 − (1 − α)ε, and observe that
εj < εj−1. As long as there are still normal nodes in both
XM (tε + j, εj) and Xm(tε + j, εj), we can repeat the above
analysis for time-steps tε+j. Furthermore, at time-step tε+j,
either |XM (tε + j, εj) ∩ N| < |XM (tε + j − 1, εj−1) ∩ N|
or |Xm(tε + j, εj) ∩ N| < |Xm(tε + j − 1, εj−1) ∩ N|, or
both. Since |XM (tε, ε0) ∩ N| + |Xm(tε, ε0) ∩ N| ≤ N , there
must be some time-step tε + T (where T ≤ N ) where either
XM (tε + T, εT ) ∩ N or Xm(tε + T, εT ) ∩ N is empty. In
the former case, all normal nodes in the network at time-step
tε + T have value at most AM − εT , and in the latter case all
normal nodes in the network at time-step tε + T have value
no less than Am + εT . We will show that εT > 0, which
will contradict the fact that the largest value monotonically
converges to AM (in the former case) or that the smallest
value monotonically converges to Am (in the latter case). To
do this, note that

εT = αεT−1 − (1− α)ε

= α2εT−2 − α(1 − α)ε − (1− α)ε

...

= αT ε0 − (1 − α)(1 + α+ · · ·+ αT−1)ε

= αT ε0 − (1 − αT )ε

≥ αN ε0 − (1− αN )ε.

Since ε < αN

1−αN ε0, we obtain εT > 0, providing the desired
contradiction. It must thus be the case that ε0 = 0, proving
that AM = Am.

The above result establishes the notion of network robust-
ness introduced in Definition 13 as the appropriate metric for
reasoning about purely local distributed algorithms, supplant-
ing the traditional metric of connectivity. We will discuss the
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Fig. 4. A 3-robust graph that is not (3,2)-robust.

relationship between connectivity and robustness in further
detail later in the paper.

When the network is time-varying, one can state the fol-
lowing corollary of the above theorem. The proof is given in
the Appendix.
Corollary 1: Consider a time-varying network modeled by

a digraph D[t] = (V , E [t]) where each normal node updates
its value according to the W-MSR algorithm with parameter
F . Let {tk} denote the set of time-steps in which D[t] is
(F+1, F+1)-robust. Then, under the F -total malicious model,
resilient asymptotic consensus is achieved if |{tk}| = ∞ and
|tk+1 − tk| ≤ c, ∀k, where c ∈ Z>0.

To illustrate these results consider the graphs in Figs. 1
and 4. These graphs can withstand the compromise of F = 1
malicious node in the network using the W-MSR algorithm
with parameter F = 1 (each graph is (2,2)-robust but not
(3,3)-robust). This is not to say that it is impossible for the
normal nodes to reach consensus if there are, for example,
two nodes that are compromised. Instead, these results say
that there are two specific nodes that can be compromised
by an adversary to prevent consensus (e.g., nodes 5 and 6 in
Fig. 4).

B. F -Local and f -Fraction Local Malicious Models

The previous result fully characterizes those network
topologies that are able to handle F -total malicious adver-
saries. In order to capture the case when the total number
of adversaries is quite large (e.g., in large-scale networks),
we now consider the F -local and f -fraction local malicious
models. Due to the fact that there is no meaningful upper
bound on the total number of adversaries under these models,
we cannot rely on a ‘sufficiently large’ number of nodes in
each set having F + 1 neighbors outside. Instead, we must
return to the original definition of an r-robust network and
increase the requirements on the number of external neighbors
for a node in one out of any pair of disjoint sets.
Theorem 2: Consider a time-invariant network modeled by

a digraph D = (V , E) where each normal node updates
its value according to the W-MSR algorithm with parameter
F . Under the F -local malicious model, resilient asymptotic
consensus is achieved if the topology of the network is
(2F + 1)-robust. Furthermore, a necessary condition is for
the topology of the network to be (F + 1)-robust.

Proof: (Necessity) If the network is not (F + 1)-robust,
there exist two disjoint subsets of nodes that are not (F +1)-
reachable, i.e., each node in these two sets would have at most

F

F

F

F
2F 2Fx1 x2

S1 S3

S2

Fig. 5. Illustration of Proposition 2

F neighbors outside the set. If we assign the maximum and
minimum values in the network to these two sets, respectively,
the nodes in these sets would never use any values from
outside their own sets. Thus, their values would remain
unchanged, and consensus will not be reached.
(Sufficiency) The proof of sufficiency is similar to the proof

of Theorem 1. Note that when considering the nonempty,
disjoint sets XM (tε, ε0) ∩ N and Xm(tε, ε0) ∩ N defined in
the proof of Theorem 1, at least one of these two sets must
be (2F + 1)-reachable due to the assumption of (2F + 1)-
robustness of the network. Thus, at least one of these two sets
contains some normal node which will use at least one of its
normal neighbors’ values from outside.
Corollary 2: Consider a time-varying network modeled by

a digraph D[t] = (V , E [t]) where each normal node updates
its value according to the W-MSR algorithm with parameter
F . Let {tk} denote the set of time-steps in which D[t] is
(2F + 1)-robust. Then, under the F -local malicious model,
resilient asymptotic consensus is achieved if |{tk}| = ∞ and
|tk+1 − tk| ≤ c, ∀k, where c ∈ Z>0.

Although the sufficient and necessary conditions in Theo-
rem 2 do not coincide, the following result shows that the
sufficient condition in the theorem is sharp.
Proposition 2: For every F ∈ Z>0, there exists a 2F -

robust network that fails to reach consensus using the W-MSR
algorithm with parameter F .

Proof: We will prove the result by giving a construction
of such a graph, visualized in Figure 5. In Figure 5, S1, S2

and S3 are all complete components with |S1| =|S3| = 2F
and |S2| = 4F . Each node in S1 connects to 2F nodes of
S2 and each node in S3 connects to the other 2F nodes of
S2, and all of these connections are undirected. Node x1 has
incoming edges from all nodes in S1 and similarly node x2

has incoming edges from all nodes in S3. This is an example
of a graph that arises from the construction that we derive in
Section VII-A, where we show that such a graph will be 2F
robust. We choose F nodes of S1 and also F nodes of S3 to be
malicious; note that this constitutes an F -local set of malicious
nodes. Then we assign node x1 with initial value m, node x2

with initial value M and the other normal nodes with initial
values c, such that m < c < M . Malicious nodes in S1 and S3

will keep their values unchanged at m and M , respectively.
We can see that, by using the W-MSR algorithm, the values of
nodes x1 and x2 will never change and thus consensus cannot
be reached, completing the proof.

To illustrate these results, consider the 3-robust graph of
Fig. 4. Recall that this graph cannot generally sustain 2
malicious nodes as specified by the 2-total model; it is not
(3,3)-robust. However, under the 1-local model, it can sustain
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two malicious nodes if the right nodes are compromised. For
example, nodes 1 and 4 may be compromised under the 1-local
model and the normal nodes will still reach consensus. This
example illustrates the advantage of the F -local model, where
there is no concern about global assumptions. If a digraph is
(2F +1)-robust, then up to F nodes may be compromised in
any node’s neighborhood, possibly resulting in more than F
malicious nodes in the network (as in the previous example).

We now extend the discussion to the f -fraction local
malicious model.
Theorem 3: Consider a time-invariant network modeled by

a digraph D = (V , E) where each normal node updates its
value according to the W-MSR algorithm with parameter f .
Under the f -fraction local malicious model, resilient asymp-
totic consensus is achieved if the topology of the network is
p-fraction robust, where 2f < p ≤ 1. Furthermore, a necessary
condition is for the topology of the network to be p′-fraction
robust, where p′ > f .

Proof: The proof is similar to the proof of Theorem 2. For
the proof of sufficiency, note that under the f -fraction local
model, each normal node will disregard at most 2 × �fdi�
values from its neighborhood at each time-step. Thus, if the
network is p-fraction robust, where 2f < p ≤ 1, at least one
of these two sets XM (tε, ε0) ∩ N and Xm(tε, ε0) ∩ N will
adopt some normal node’s value from outside.
Corollary 3: Consider a time-varying network modeled by

a digraph D[t] = (V , E [t]) where each normal node updates
its value according to the W-MSR algorithm with parameter
f . Let {tk} denote the set of time-steps in which D[t] is
p-fraction robust, where 2f < p ≤ 1. Then, under the f -
fraction local malicious model, resilient asymptotic consensus
is achieved if |{tk}| = ∞ and |tk+1 − tk| ≤ c, ∀k, where
c ∈ Z>0.

C. F -Total, F -Local and f -Fraction Local Byzantine Models

Our above results have focused on the case of malicious
(but not Byzantine) adversaries. The recent paper [28] inves-
tigates a similar algorithm in the context of F -total Byzantine
adversaries, and provides necessary and sufficient conditions
for the algorithm to succeed. While their proof techniques are
different, the main result can be captured neatly by the notion
of robustness as follows.
Definition 14: For a network D = (V , E), define the normal

network of D, denoted by DN , as the network induced by the
normal nodes, i.e., DN = (N , EN ), where EN is the set of
directed edges among the normal nodes.
Theorem 4 ( [28]): Consider a time-invariant network

modeled by a digraph D = (V , E) where each normal node
updates its value according to the W-MSR algorithm with
parameter F . Under the F -total Byzantine model, resilient
asymptotic consensus is achieved if and only if the topology
of the normal network is (F + 1)-robust.

Proof: To prove sufficiency, besides the method used
in [28], [51], we can also use the approach proposed in the
proof of Theorem 1. Note that when the original network is
(2F + 1)-robust, the normal network will be (F + 1)-robust.

To prove necessity, if the normal network is not (F + 1)-
robust, we can assign the two disjoint sets that are not (F+1)-
reachable the maximum and minimum values, respectively.

Since the Byzantine nodes can send different values to differ-
ent neighbors, suppose they send the maximum and minimum
values to the maximum and minimum sets, respectively. Then,
nodes in these two sets never use any values from outside their
own sets and consensus is not reached.

The following results are straightforward extensions of the
above result from [28] to the local models and time-varying
networks.
Corollary 4: Consider a time-invariant network modeled by

a digraph D = (V , E) where each normal node updates its
value according to the W-MSR algorithm with parameter F (or
parameter f for the f -fraction local model). Under the F -local
Byzantine model, resilient asymptotic consensus is achieved
if and only if the topology of the normal network is (F +1)-
robust. Under the f -fraction local Byzantine model, resilient
asymptotic consensus is achieved if the normal network is p-
fraction robust, where p > f , and a necessary condition is for
the normal network to be p′-fraction robust, where p′ ≥ f .

Proof: The proof is similar to the proof of Theorem 4. For
the proof of necessity, note that the choice of Byzantine nodes
should satisfy the F -local and f -fraction local properties,
respectively. Further note that the only difference between the
sufficient and necessary conditions for the f -fraction local
model is p = f . When the normal network is f -fraction
robust, we can choose two sets which are at most f -fraction
reachable and each node i in these two sets has at most fdi�
neighbors outside. For certain choices of initial values (e.g.,
these two sets have the maximum and minimum initial values,
respectively), consensus can be reached if fdi 	∈ Z≥1 and
cannot be reached if fdi ∈ Z≥1.
Corollary 5: Consider a time-varying network modeled by

a digraph D[t] = (V , E [t]) where each normal node updates
its value according to the W-MSR algorithm with parameter
F (or parameter f for the f -fraction local model). Let {tk}
denote the set of time steps in which D[t] is either (i)
(2F + 1)-robust, or (ii) p-fraction robust, where 2f < p ≤ 1.
Then, under (i) the F -total or F -local Byzantine model,
or (ii) the f -fraction local Byzantine model, respectively,
resilient asymptotic consensus is achieved if |{tk}| = ∞ and
|tk+1 − tk| ≤ c, ∀k, where c ∈ Z>0.

VI. SIMULATION RESULTS

This section presents a numerical example to illustrate our
results. In this example, the network is given by the (2,2)-
robust graph shown in Fig. 6, in which the node set is
V = {1, 2, . . . , 14} and node i ∈ V has initial value xi[0]
shown in the circle representing the node. To verify that
this graph is (2,2)-robust one must exhaustively check every
nonempty, disjoint pair of subsets of nodes to make sure that
either every node in one of the sets has at least 2 neighbors
outside of its set, or that there are at least 2 nodes in the union
of the subsets that have 2 or more neighbors outside of their
respective set. For example, the pair of sets {6} and V \ {6}
passes this test since each node in the first set (just node 6) has
at least 2 neighbors outside of its set (in this case just node 6’s
neighbors). As another example, the pair of sets {1, 2, 11, 12}
and {5, 6} passes since node 11 and node 5 each have 2 or
more neighbors outside of their respective sets.
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Fig. 6. (2,2)-Robust network topology.

Since the network is (2,2)-robust, Theorem 1 indicates it
can sustain a single malicious node in the network under
the 1-total model. Suppose that the node with the largest
degree, node 14, is compromised and turns malicious. The
normal nodes use either the LCP given in (1) or W-MSR
for their update rule. Each normal node i ∈ N uses the
weights wij [t] = |Ji[t]|−1 for each j ∈ Ji[t] with LCP and
wij [t] = (|Ji[t] \Ri[t]|)−1 for each j ∈ Ji[t] \Ri[t] with W-
MSR. The malicious node’s objective is to prevent the normal
nodes from reaching consensus and to drive the normal node
values outside of the range of their initial values.

The results for the time-invariant network of Fig. 6 are
shown in Fig. 7. It is clear in Fig. 7(a) that the malicious node
is able to drive the values of the normal nodes outside of the
range of initial values and prevent consensus whenever LCP
is used. On the other hand, the malicious node is unable to
achieve its goal whenever W-MSR is used. Note that although
consensus can be reached, the malicious node still has the
potential to drive the consensus process to any value in the
interval [0, 1] by choosing the desired value as its initial value
and remaining constant. However, this is allowed with resilient
asymptotic consensus (because the consensus value is within
the range of the initial values held by normal nodes).

Finally, we illustrate the time-varying network result for
the 1-total malicious model by removing approximately half
of the directed edges in 9 out of every 10 consecutive time-
steps. To do this, we check whether the time-step is equal
to 0 modulo 10. If it is not, then we model directed edge
removal by a Bernoulli process with parameter p = 0.5, so
that approximately half of the directed edges are removed in
these time-steps. The results are illustrated in Fig. 8(b), and
show that only the speed of convergence is affected when
using W-MSR.

VII. REVISITING NETWORK ROBUSTNESS:
CONSTRUCTION AND PROPERTIES

Having established network robustness as the key metric for
characterizing the efficacy of the W-MSR algorithm, we now
provide more insight into robust networks. First, we provide a
method for constructing robust digraphs, and show that scale-
free networks constructed using the preferential-attachment
model are robust. We then explore more properties of robust
digraphs.
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Fig. 7. Malicious node attempts to prevent the normal nodes from reaching
consensus and drive their values away from the convex hull containing their
initial values. The malicious node succeeds whenever LCP is used, but fails
whenever W-MSR is used.

A. Construction of Robust Digraphs

Note that robustness requires checking every possible
nonempty disjoint pair of subsets of nodes in the digraph for
certain conditions. Currently, we do not have a computation-
ally efficient method to check whether these properties hold
in arbitrary digraphs. However, in [2] it is shown that the
common preferential-attachment model for complex networks
(e.g., [52]) produces r-robust graphs, provided that a sufficient
number of links are added to new nodes as they are attached.
Here we show that preferential attachment also leads to (r, s)-
robust graphs.
Theorem 5: Let D = (V , E) be an (r, s)-robust digraph

(with s ≥ 1). Then the digraph D′ = (V ∪ {vnew}, E ∪ Enew),
where vnew is a new vertex added to D and Enew is the directed
edge set related to vnew, is (r, s)-robust if dvnew ≥ r + s− 1.

Proof: For a pair of nonempty, disjoint sets S1 and S2,
there are three cases to check: vnew 	∈ Si, {vnew} = Si and
vnew ∈ Si, for some i ∈ {1, 2}. In the first case, since D is
(r, s)-robust, the conditions in Definition 13 must hold. In the
second case, X r

Si
= Si, and we are done. In the third case,
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Fig. 8. The malicious node has the same objective as before, but now the
network is time-varying with only one time-step out of every ten guaranteed
to be (2,2)-robust.

suppose, without loss of generality, S2 = S ′
2∪{vnew}. Since D

is (r, s)-robust, at least one of the following conditions hold:
|X r

S1
| + |X r

S′
2
| ≥ s, |X r

S1
| = |S1|, or |X r

S′
2
| = |S ′

2|. If either
of the first two hold, then the corresponding conditions hold
for the pair S1,S2 in D′. So assume only |X r

S′
2
| = |S ′

2| holds.
Then, the negation of the first condition |X r

S1
| + |X r

S′
2
| ≥ s

implies |X r
S′
2
| = |S ′

2| < s. Hence, |Vvnew \S2| ≥ r, and |X r
S2
| =

|S2|, completing the proof.

The above result indicates that to construct an (r, s)-robust
digraph with n nodes (where n > r), we can start with
an (r, s)-robust digraph with relatively smaller order (such
as a complete graph), and continually add new nodes with
incoming edges from at least r + s− 1 nodes in the existing
digraph. Note that this method does not specify which existing
nodes should be chosen. The preferential-attachment model
corresponds to the case when the nodes are selected with
a probability proportional to the number of edges that they
already have. This leads to the formation of so-called scale-
free networks [52], and is cited as a plausible mechanism
for the formation of many real-world complex networks.

Fig. 9. A (3, 2)-robust graph constructed from K5 using preferential
attachment.

Theorem 5 indicates that a certain class of scale-free networks
is resilient to the threat models studied in this paper (provided
the number of edges added in each round is sufficiently large
when the network is forming).

For example, Fig. 9 illustrates a (3, 2)-robust graph con-
structed using preferential attachment by starting with the
complete graph on 5 nodes K5 – which is also (3,3)-robust and
is the only (3,2)-robust digraph on 5 nodes (c.f., Lemma 4 in
the sequel) – and by adding 4 new edges to each new node in
each step. Note that this graph is also 4-robust, which could
not be predicted from Theorem 5 since K5 is not 4-robust.
Therefore, it is possible (but not guaranteed) to end up with
a more robust digraph than the initial one using the growth
model from Theorem 5.

B. Properties of Robust Networks

In this subsection, we begin with the important observation
that (r, 1)-robustness is equivalent to r-robustness. This holds
because conditions (i) − (iii) in Definition 13 for (r, 1)-
robustness collapse to the condition that at least one of S1 and
S2 is r-reachable. We next establish an inheritance property
of (r, s)-robust digraphs. Note that all the proofs of the results
in this subsection can be found in the Appendix.
Lemma 2: Every (r, s)-robust digraph D = (V , E) is also

(r′, s′)-robust when 0 ≤ r′ ≤ r, 1 ≤ s′ ≤ s.
It follows from Lemma 2 that a digraph is r-robust when-

ever it is (r, s)-robust. The converse, however, is not true.
Consider the graph in Fig. 4. This graph is 3-robust, but is
not (3, 2)-robust. For example, let S1 = {1, 3, 5, 6, 7} and
S2 = {2, 4}. Only node 2 has at least 3 nodes outside of its
set, so all of the conditions (i) − (iii) fail. Therefore, (r, s)-
robustness is a strict generalization of r-robustness.

The following result formalizes the intuition that adding
links to a robust network can never reduce the robustness of
the network.
Lemma 3 (Monotonicity): Suppose D = (V , E) is an (r, s)-

robust spanning subdigraph of D′ = (V , E ′), where E ′ = E ∪
E ′′ and |E ′′| ≥ 0. Then D′ is (r, s)-robust.

Next, we look at the maximum amount of robustness one
can expect from a network with n nodes. As expected, the
complete digraph Kn is the most robust topology on n nodes.
Lemma 4 (Maximum robustness): No digraph D = (V , E)

on n nodes is (n/2� + 1)-robust. Conversely, the complete
digraph, denoted Kn = (V , EKn), with EKn = {(i, j) ∈ V ×
V : i 	= j}, is (n/2�, s)-robust, for 1 ≤ s ≤ n. Furthermore,
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whenever n > 1 is odd, Kn is the only digraph on n nodes
that is (n/2�, s)-robust with s ≥ �n/2�.

The next property relates robustness of the network to its
minimum in-degree.
Lemma 5 (Minimum In-Degree): Given an (r, s)-robust di-

graph D = (V , E), with 0 ≤ r ≤ n/2� and 1 ≤ s ≤ n, the
minimum in-degree of D, δin(D), is at least

δin(D) ≥
{
r + s− 1 if s < r;

2r − 2 if s ≥ r.

The following result provides a lower bound on the amount
of robustness that can be maintained in a digraph after
removing incoming edges from nodes in the network.
Lemma 6 (Directed Edge Removal): Given an (r, s)-robust

(p-fraction robust) digraph D, let D′ be the digraph produced
by removing up to k (q-fraction of) incoming edges of each
node in D, where 0 ≤ k < r (0 ≤ q < p ≤ 1). Then D′ is
(r − k, s)-robust ((p− q)-fraction robust).

Recall that when there are no misbehaving nodes, the
Linear Consensus Protocol given in (1) achieves consensus
if and only if the network contains a rooted out-branching.
The following result shows that 1-robustness is equivalent to
containing a rooted out-branching.
Lemma 7: A digraph D is 1-robust if and only if D contains

a rooted-out branching.
Next, we relate the robustness of the underlying graph to

its connectivity.
Theorem 6 (Connectivity of Robust Graphs): Suppose

D = (V , E) is an r-robust digraph, with 0 ≤ r ≤ n/2�. Then
the underlying graph GD is at least r-connected. Furthermore,
if D is (r, r)-robust, with 3 ≤ r ≤ n/2�, then GD is at least
(3r/2� − 1)-connected.

Finally, we discuss how to compare the robustness of
different networks. Clearly, if digraph D1 is (r1, s1)-robust
and digraph D2 is (r2, s2)-robust with maximal rk and sk
for k ∈ {1, 2}, where r1 > r2 and s1 > s2, then one can
conclude that D1 is more robust than D2. However, in cases
where r1 > r2 but s1 < s2, which digraph is more robust? For
example, consider the graphs of Figs. 1 and 4. The graph in
Fig. 1 can be shown to be (2, s)-robust, for all 1 ≤ s ≤ n = 8.
This follows because all nodes in at least one of the sets S1

and S2 have at least 2 neighbors outside of their set, for any
nonempty and disjoint S1,S2 ⊂ V . Therefore, condition (iii)
in Definition 13 is never needed, and the definition is satisfied
with r = 2 for all valid values of s. However, this graph is not
3-robust. This can be shown by selecting S1 = X and S2 = Y .
The graph in Fig. 4 is 3-robust, but is not (2,5)-robust (e.g.,
let S1 = {1, 5, 6} and S2 = {2, 3, 4}).

In general, the parameter r in (r, s)-robustness takes prece-
dence in the partial order that determines relative robustness,
and the maximal s is used for ordering the robustness of
networks with the same value of r. This choice is motivated
by the dependence of the properties outlined in this section
on the value of r. Therefore, the graph in Fig. 4 is more
robust than the graph of Fig. 1. Yet, the graph of Fig. 4 is
only 3-connected, whereas the graph of Fig. 1 is 5-connected.
Hence, it is possible that a digraph with less connectivity is
more robust.

VIII. CONCLUSION

The notion of graph connectivity has long been the back-
bone of investigations into fault tolerant and secure distributed
algorithms. Indeed, under the assumption of full knowledge of
the network topology, connectivity is the key metric in deter-
mining whether a fixed number of malicious adversaries can
be overcome. However, in large scale systems and complex
networks, it is not practical for the various nodes to obtain
knowledge of the global network topology. This necessitates
the development of algorithms that allow the nodes to be
agnostic of the topology and identities of non-neighbor nodes,
and operate on purely local information. This paper continues
and extends the work started in [1], [2], [26]–[29], [31],
[45], [46], and represents a step in this direction for the
particular application of distributed consensus. Using the W-
MSR algorithm and the notion of robust digraphs introduced in
[2], and the extensions of each presented here, we characterize
necessary/sufficient conditions for the normal nodes in large-
scale networks to mitigate the influence of adversaries. We
show that the notions of robust digraphs are the appropriate
analogues to graph connectivity when considering purely local
filtering rules at each node in the network. Just as connectivity
has played a central role in the existing analysis of reliable
distributed algorithms with global topological knowledge, we
believe that robustness will play an important role in the
investigation of purely local algorithms.
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APPENDIX

A. Proof of Proposition 1

Proof: For simplicity, we focus on the case when n is
even. Construct an undirected graph as follows. Let X and
Y be two complete graphs on n

2 nodes. Number nodes in
X and Y as x1, x2, . . . , xn

2
and y1, y2, . . . , yn

2
, respectively.

For any node xi ∈ X , if i ≤|Y| − F + 1, connect xi with
nodes yi, yi+1, . . . , yi+F−1; otherwise, connect xi with nodes
yi, . . . , yn

2
and nodes y1, . . . , yi+F−n

2 −1. Then each node in
X and Y has exactly F neighbors in the other set.

Next we will prove that the connectivity of this graph is
n
2 + F − 1. Let C = {CX , CY} be a vertex cut, where CX =
C ∩ X and CY = C ∩ Y . Without loss of generality, assume
that CX = {x1, x2, . . . , x|CX |}; other ways of choosing CX are
equivalent to this situation by renumbering the nodes. By the
definition of a vertex cut, we know |CX | ≥ F ; otherwise, each
node in Y \ CY still has at least one neighbor in X , and since
X \CX and Y \CY each induce fully-connected subgraphs, we
see that the graph will be connected (contradicting the fact that
C is a vertex cut). When F ≤ |CX |< n

2 , the remaining nodes
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of X collectively still have k = n
2−|CX |+F −1 neighbors in

Y , which implies we need to remove at least k nodes from Y
to disconnect the graph. When CX = X , since Y is complete,
we know |CY | = n

2 − 1. Thus the connectivity of this graph
is n

2 + F − 1.
In this graph, assume that all nodes in X have initial value a,

and all nodes in Y have initial value b, where a < b. When any
node xi applies the W-MSR algorithm, all of its F neighbors
in Y have the highest values in xi’s neighborhood, and thus
they are all disregarded. Similarly, all of yi’s neighbors in X
are disregarded as well. Thus, each node in each set only uses
the values from its own set, and no node ever changes its
value, which shows that consensus will never be reached.

B. Proof of Corollary 1

Proof: As in the proof of Theorem 1, we define the
same terms and argue by contradiction. In this case, fix
ε < αNc

1−αNc ε0, which satisfies ε0 > ε > 0. Let tε be such
that M [t] < AM + ε and m[t] > Am − ε, ∀t ≥ tε. By
hypothesis, there exists τ1 ∈ {tε, tε + 1, . . . , tε + c − 1}
such that D[τ1] is (F + 1, F + 1)-robust. As in the proof
of Theorem 1, there either exists i ∈ XM (τ1, ε0) ∩ N such
that xi[τ1 + 1] ≤ AM − ε1 or j ∈ Xm(τ1, ε0) ∩ N such
that xj [τ1 + 1] ≥ Am + ε1, or both, where we have defined
ε1 = αε0 − (1 − α)ε. Note that as before, these inequalities
hold for all normal nodes outside of the sets XM (τ1, ε0) and
Xm(τ1, ε0), respectively, and 0 < ε < ε1 < ε0 by the choice
of ε. Furthermore, |XM (τ1 + 1, ε1) ∩N| < |XM (τ1, ε0) ∩N|
or |Xm(τ1 + 1, ε1) ∩ N| < |Xm(τ1, ε0) ∩N|, or both.

Define recursively εk = αεk−1 − (1−α)ε for 1 ≤ k ≤ Nc.
Regardless of the network topology, we can show that any
normal node i satisfying xi[τ1 + 1] ≤ AM − ε1 will satisfy
xi[τ1 + k] ≤ AM − εk at time τ1 + k, for all 1 ≤ k ≤ Nc.
This holds because each normal node uses its own value with
weight no smaller than α. Likewise, any normal node j satis-
fying xj [τ1+1] ≥ Am+ε1 will satisfy xj [τ1+k] ≥ Am+εk at
time τ1+k, for all 1 ≤ k ≤ Nc. Because of these relationships,
we have that |XM (τ1+k, εk)∩N| ≤ |XM (τ1+k−1, εk−1)∩N|
and |Xm(τ1 + k, εk) ∩ N| ≤ |Xm(τ1 + k − 1, εk−1) ∩ N|,
for each time-step regardless of the network topology. How-
ever, we are interested in the time-steps τ1, τ2, . . . , in which
|XM (τj + 1, ε(1+τj−τ1)) ∩ N| < |XM (τj , ε(τj−τ1)) ∩ N| or
|Xm(τj + 1, ε(1+τj−τ1)) ∩ N| < |Xm(τj , ε(τj−τ1)) ∩ N|.
These time-steps correspond to the times at which D[τj ]
is (F + 1, F + 1)-robust and both XM (τj , ε(τj−τ1)) and
Xm(τj , ε(τj−τ1)) have at least one normal node, for j ≥ 1
(by the argument made in the proof of Theorem 1). Since
|XM (τ1, ε0)∩N|+|Xm(τ1, ε0)∩N| ≤ N and |τN−τ1| ≤ Nc,
there must be some time-step τ = τ1 + T (where T ≤ Nc)
where either XM (τ1 + T, εT ) ∩N or Xm(τ1 + T, εT ) ∩N is
empty. In the former case, all normal nodes in the network
at time-step τ1 + T have value at most AM − εT , and in the
latter case all normal nodes in the network at time-step τ1+T

have value no less than Am+ εT . Since ε < αNc

1−αNc ε0, we can
show that εT > 0, producing the desired contradiction.

C. Proof of Lemma 2

Proof: If D is empty or trivial, there is nothing to prove,
so assume D is nonempty and nontrivial. For any nonempty,

disjoint pair S1,S2 ⊂ V , at least one of the three conditions
(i)–(iii) of Definition 13 holds. Observe that |X r′

Sk
| ≥ |X r

Sk
|

for k = 1, 2. Hence if (i) or (ii) hold, then |X r′
Sk
| ≥ |X r

Sk
| =

|Sk| ≥ |X r′
Sk
|, which implies |X r′

Sk
| = |Sk|. If (iii) holds, then

|X r′
S1
|+ |X r′

S2
| ≥ |X r

S1
|+ |X r

S2
| ≥ s ≥ s′.

Thus, any pair of nonempty, disjoint subsets of nodes in D
satisfy Definition 13 with r and s replaced by r′ and s′.
Therefore, D is (r′, s′)-robust.

D. Proof of Lemma 3

Proof: Suppose D′ is not (r, s)-robust. Then there exists
a pair of nonempty, disjoint subsets S1,S2 ⊂ V such that all
of the conditions (i)-(iii) in Definition 13 fail to hold with
r and s. By removing directed edges in E ′′, the number of
nodes in X r

S1
and X r

S2
can only decrease, and therefore none

of conditions (i)-(iii) hold for the pair S1,S2 in D. Hence,
D is not (r, s)-robust, which is a contradiction.

E. Proof of Lemma 4

Proof: Assume D is nonempty and nontrivial (otherwise,
the result holds by definition). Pick S1 and S2 by taking any
bipartition of V such that |S1| = n/2� and |S2| = �n/2�.
Neither S1 nor S2 have n/2� + 1 nodes; therefore, neither
one is (n/2�+ 1)-reachable. Hence, D is not (n/2� + 1)-
robust. Now suppose D = Kn. For any nonempty, disjoint
S1,S2 ⊂ V , |V \ Si| ≥ n/2� holds for at least one of
i ∈ {1, 2}. For whichever i this holds, |X �n/2�

Si
| = |Si|, so

that Kn is (n/2�, s)-robust, for 1 ≤ s ≤ n. For the last
statement, we show that whenever n > 1 is odd, removing
any directed edge from Kn causes the resulting digraph to
lose (n/2�, �n/2�)-robustness. Suppose e = (i, j) is the
directed edge removed from EKn to form D′′ = (V , E ′′), with
E ′′ = EKn \ {e}. Choose S1 and S2 by taking any bipartition
of V in D′′ such that |S1| = n/2�, |S2| = �n/2�, i ∈ S1, and
j ∈ S2. Then, |X �n/2�

S1
| = 0 and |X �n/2�

S2
| = �n/2�−1 < |S2|.

Therefore, D′′ is not (n/2�, s)-robust for s ≥ �n/2�. This is
sufficient to prove the statement because of the monotonicity
result of Lemma 3, combined with the fact that any spanning
subdigraph of Kn, D′ = (V , E ′) ⊂ Kn, can be obtained from
a directed edge removal process starting with some directed
edge e = (i, j) /∈ E ′.

F. Proof of Lemma 5

Proof: Whenever r ∈ {0, 1}, there is nothing to prove.
Also, if n ≤ 2, then r ≤ 1. Therefore, assume n ≥ 3 and 2 ≤
r ≤ n/2�. Fix j ∈ V . First, let S1 = {j} and S2 = V \ S1.
Then, |X r

S2
| = 0 so that |X r

S1
| = |S1|. This proves dj ≥ r.

Next, whenever s < r, form S1 by choosing s−1 of node j’s
in-neighbors along with j itself. Take S2 = V \ S1 as before.
Since |S1| = s < r, again |X r

S2
| = 0 so that |X r

S1
| = |S1|.

This implies j has an additional r in-neighbors outside of S1,
thereby guaranteeing dj ≥ r + s − 1. On the other hand,
whenever s ≥ r, form S1 by choosing r − 2 of node j’s in-
neighbors along with j itself. Again, choose S2 = V\S1. Since
|S1| < r and s ≥ r, again |X r

S2
| = 0 so that |X r

S1
| = |S1|.

This implies j has an additional r in-neighbors outside of S1,



780 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

thereby guaranteeing dj ≥ 2r − 2. Since j ∈ V is arbitrary,
the bound on δin(D) follows.

G. Proof of Lemma 6

Proof: From the definition of an (r, s)-reachable (p-
fraction reachable) set, we know that if a set is (r, s)-reachable
(p-fraction reachable), then by removing up to k (q-fraction
of) incoming edges of each node in D, where 0 ≤ k < r
(0 ≤ q < p < 1), the set is (r − k, s)-reachable ((p − q)-
fraction reachable). Thus, by the definition of (r, s)-robustness
(p-fraction robustness), the result follows.

H. Proof of Lemma 7

Proof: If D is 1-robust, we will prove that D has a rooted
out-branching by contradiction. Assume that D does not
have a rooted out-branching. Decompose D into its strongly
connected components, and note that since D does not have a
rooted out-branching, there must be at least two components
that have no incoming edges from any other components.
However, this contradicts the assumption that D is 1-robust (at
least one of the two subsets must have a neighbor outside the
set), so it must be true that there exists a rooted out-branching.

Assume D contains a rooted out-branching, but is not 1-
robust. Then we can find two subsets of nodes which do not
have neighbors from outside, which contradicts the assumption
that D contains a rooted out-branching.
Remark 1: The proof of Lemma 7 is a more direct version

of the proof of Theorem 5 in [41].

I. Proof of Theorem 6

Proof: If r = 0, the first statement is vacuously true, and
if r = 1, it holds by Lemma 7. Therefore, assume r ≥ 2.
By Lemma 3, the underlying graph GD = (V , EG) is r-robust.
By Lemmas 2 and 7, the graph is connected. Suppose there
is a vertex cut K ⊂ V such that |K| < r, and denote the
k ≥ 2 connected components remaining after the removal of
K by C1, C2, . . . , Ck. Let S1 = C1 and S2 = C2. Since GD
is r-robust, either S1 or S2 is r-reachable, which contradicts
the fact that K is a vertex cut. Hence, any vertex cut K must
satisfy |K| ≥ r, so that GD is at least r-connected.

For the second statement, suppose there is a vertex cut K ⊂
V such that r ≤ |K| ≤ 3r/2� − 2, and denote the k ≥
2 connected components remaining after the removal of K
by C1, C2, . . . , Ck. Partition K into K = K1 ∪ K2 ∪ K3 such
that |K1| = |K2| = r/2� − 1 and the remaining nodes go
to K3; i.e., 1 ≤ |K3| ≤ �r/2�. Then form S1 = C1 ∪ K1

and S2 = C2 ∪ K2. Since GD is (r, r)-robust by Lemma 3,
δ(GD) ≥ 2r− 2 by Lemma 5, so that |Ci| ≥ �r/2�+1 (since
there are at most 3r/2� − 2 neighbors in K). It follows that
|S1|, |S2| ≥ r, and we are guaranteed |X r

S1
| + |X r

S2
| ≥ r.

Because |K1 ∪ K2| ≤ r − 1 and r ≥ 3, there is v ∈ C1 ∪ C2
such that v has at least r neighbors outside of its set. Without
loss of generality, assume v ∈ C1. Since |K2|+ |K3| ≤ r− 1,
∃j ∈ C2 ∪ · · · ∪ Ck such that (j, v) ∈ E , which contradicts the
fact that K is a vertex cut whose removal results in components
C1, C2, . . . , Ck. Hence, GD is at least (3r/2�− 1)-connected.
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