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Abstract 
 

Feedback control real-time scheduling (FCS) aims 
at satisfying performance specifications of real-time 
systems based on adaptive resource management. 
Existing FCS algorithms often rely on the existence of 
continuous control variables in real-time systems. A 
number of real-time systems, however, support only a 
finite set of discrete configurations that limit the 
adaptation mechanisms. This paper presents Hybrid 
Supervisory Utilization CONtrol (HySUCON) for 
scheduling such real-time systems. HySUCON 
enforces processor utilization bounds by managing the 
switchings between the discrete configurations. Our 
approach is based on a best-first-search algorithm that 
is invoked only if reconfiguration is necessary.  
Theoretical analysis and simulations demonstrate that 
the approach leads to robust utilization bounds for 
varying execution times. Experimental results 
demonstrate the algorithm performance for a 
representative application scenario. 
 
1. Introduction 
 

Traditional real-time scheduling theories [7][16] 
depend on accurate a priori knowledge of the system 
workload to provide real-time performance guarantees. 
Despite their success, they cannot easily be applied to 
many real-world systems since precise a priori 
knowledge of application behavior is not often 
available. For example, in large scale distributed real-
time and embedded (DRE) systems, dynamic operating 
conditions due to partial failures and changes in 
configurations due to mode transitions can cause 
unexpected and acute changes to resource usage 
patterns. In many cases, if variations are undetected 

and unmanaged they can induce drastic changes in 
system performance [12].  

Adaptive solutions to accommodate unexpected 
changes in the operating environment are usually 
based on hand-tuned and heuristic strategies which 
could induce instability. Such solutions tend to be 
stove-piped, requiring rework when ported to a new 
operating condition or platform. Further, sequences of 
such environmental changes over time can lead to 
chronic loss of confidence in system reliability and 
utility. Addressing these concerns requires new 
adaptive techniques to be developed on solid 
theoretical foundations that can provide analytic 
guarantees on system performance.   

To overcome limitations of traditional scheduling 
theories and heuristic-based adaptive solutions, a 
number of feedback control real-time scheduling 
(FCS) algorithms (e.g., [1][4][5][12][17]) have been 
developed recently. While traditional approaches 
usually adopt open-loop scheduling schemes, FCS 
algorithms employ software feedback control loops 
that dynamically adjust resource allocation in response 
to workload changes.  Furthermore, FCS algorithms 
are modeled and designed using rigorous control-
theoretic methodologies. As a result, these algorithms 
can provide robust and analytical performance 
guarantees despite uncertainties. 

Although existing FCS algorithms have shown 
promise, several important practical issues have not 
been addressed. In particular, existing algorithms often 
assume that the system has continuous control 
variable(s) that can continuously be adjusted.  While 
this assumption holds for certain classes of systems, 
there are many classes of real-time systems, such as 
avionics and total-ship computing environments that 
only support a finite a priori set of discrete 
configurations. The control variables in such systems 



are therefore intrinsically discrete.  For instance, rate 
adaptation is a commonly used mechanism for 
controlling the CPU utilization and deadline miss ratio 
of a system [5][13][17]. While existing algorithms 
generally assume task rates can be set to any value 
within a range, the possible task rates in some 
applications may be discrete due to practical 
constraints.  For instance in a sensor-to-weapon 
shooter system, changing the task rates imply changing 
the rate at which sensed imagery data are published. 
Setting the task rates to any value within a range is not 
practical since the hardware that senses the data may 
not have a high-resolution timer needed to precisely 
program the tasks. Some multimedia applications (e.g., 
Multi Bit Rate video) also only support a few 
predefined rates. Several other adaptation strategies 
may also provide only discrete control variables.  
Examples include task admission control, switching 
communication protocols, algorithms, or different 
levels of replication. 

Traditional control theories such as linear control 
cannot effectively handle discrete control variables, 
especially when the number of possible values is small.  
To support adaptation strategies with discrete 
variables, hybrid (continuous/discrete) control 
algorithms must be used. This paper presents Hybrid 
Supervisory Utilization CONtrol (HySUCON) for 
enforcing utilization bounds in real-time systems by 
adaptively selecting the task rates from a finite discrete 
set. Although rate adaptation is used as a concrete 
example, our methodology is generally applicable to 
systems operating in a finite set of real-time and 
performance configurations.  

The primary contributions of the paper are: 
1. Design of a HySUCON, a hybrid supervisory 

control scheduling algorithm based on utilization 
control. 

2. Theoretical analysis of HySUCON for providing 
theoretical performance guarantees. 

3. Simulation results that demonstrate robust 
utilization performance for varying execution 
times. 

4. Evaluation of the approach using experimental 
results for a representative application scenario. 
The rest of the paper is organized as follows. 

Section 2 reviews related work. The problem is 
formulated in Section 3. Section 4 presents the 
development and analysis of HySUCON. Section 5 
presents the simulations results and Section 6 the 
experimental results. Conclusions are discussed in 
Section 7. 

 
2. Related Work 
 

A survey of feedback performance control in 
computing systems is presented in [3]. Recent research 
on applications of control theory to real-time 
scheduling and utilization control is directly related to 
this paper.  Steere et al., developed a feedback 
scheduler [17] that coordinated the share of CPU 
cycles allocated to threads. Abeni et al., presented 
control analysis of a reservation-based feedback 
scheduler [4]. Cervin et al. presented a feedback 
scheduler that adapts task rates for digital control 
systems [5]. The FCS/nORB system [13] provides a 
middleware service that dynamically controls CPU 
utilization by adjusting the invocation rates of remote 
operation invocations on a real-time Object Request 
Broker. All the above solutions continuously adjust 
control variables (e.g., CPU shares or task rates).  

Abdelwahed et al. introduced a general hybrid 
control approach for managing computing systems 
based on a finite set of control inputs [1]. This 
approach employs an exhaustive search algorithm to 
evaluate a performance measure for all possible 
operating states during a prediction horizon in order to 
select the best control input. While the framework can 
be applied for rate adaptation, the exhaustive search 
introduces significant overhead and is not suitable for 
real-time systems.  

Several other FCS algorithms [2][12] used 
admission control and service level adjustment as 
adaptation mechanism for controlling the CPU 
utilization. Although both mechanisms are discrete in 
nature, the control algorithms were designed based on 
approximate fluid models with continuous variables. 
While such approximations may be adequate for 
systems with a large number of tasks, they can become 
inadequate for systems with a small number of tasks 
and service levels. 
 
3. Problem Formulation 
 

This paper considers a real-time system comprised 
of tasks }1|{ niTi ≤≤  executing on a single 
processor P . Each task  is invoked periodically at a 
rate at sampling instant .  The rate is 
assumed to take values in a finite set of discrete rates, 

 where ) is the j
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possible rate of task . The sampling period of the 
controller, denoted by , is selected to be larger than 
the maximum task period. 
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Each task  is characterized by the following 
attributes:  

iT

• : Estimated execution time of  iC iT
• : Best case execution time of task  

iBCC iT

• : Worst case execution time of task  
iWCC iT

•  Current rate of task   :)(kRi iT
• : Actual execution time of task  at  )(kAEi iT k
The deadline for each task is assumed to be equal to its 
period. The actual execution times  are bounded 
but not known a priori. It is assumed that 

. 

)(kAEi

ii wciBC CkAEC ≤≤ )(
The processor P  is characterized by the following 

attributes:  
• : Estimated CPU utilization at k  ∑=

i
ii kRCkB )()(

• : CPU utilization during sampling period  k )(kU
• : Desired utilization set-point  sU
• : Ratio of actual change in utilization to 

estimated change in utilization.  
aG

This paper presents a supervisory control algorithm 
that dynamically assigns the rates nikRi K,1),( =  in 
order to ensure that the processor utilization 

stays in a predetermined region )(kU ε≤− |)(| sUkU  
since for varying execution times and discrete task 
rates it is not be feasible to drive the utilization exactly 
to the set-point.   

The algorithm employs a feedback control loop (see 
Section VI for more details) that dynamically adjusts 
task rates to enforce the control objective. The 
controller is located on a separate processor or shares a 
processor with some applications and must be 
scheduled as the highest-priority task in order to 
effectively control utilization under overload 
conditions. The processor has a utilization monitor and 
a rate modulator. A separate TCP connection connects 
the controller with the pair of utilization monitor and 
rate modulator on the processor. The user inputs to the 
controller include the utilization set-point , the 
parameter ε, and the finite sets of rates for each task. 
The control variable is the processor utilization U(k).  
The control inputs from the controller are the changes 
to task rates ∆R(k) = [∆R

sU

1(k),..., ∆Rn(k)]T, where ∆Ri(k) 
= Ri(k) - Ri(k-1), 1≤i≤n.  The supervisory controller 
employs the following mechanisms:   
1. The utilization monitor on the processor that sends 

the utilization U(k) in the last sampling period to 
the controller. 

2. The controller computes the new task rates R(k) 
and sends them to the rate modulator on the 
processor P. 

3. The rate modulator changes the task rates according 
to R(k).   

The system is controlled by a hybrid supervisory 
controller which receives the utilization U(k) that takes 
values in the interval [0,1] (continuous set) and sends 
the rates  R(k) that take value in a discrete finite set. 
The controller changes the task rates only if needed in 
order to keep the utilization in the region 

ε≤− |)(| sUkU .  
Next, we establish a dynamic model that 

characterizes the relationship between the control input 
∆R(k) and the controlled variable U(k).  Let ∆Ri(k) 
denote the change to task rate, ∆Ri(k) = Ri(k) – Ri(k-1).  
The estimated change to utilization, Db(k), is given by 

∑
≤≤
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ni

iib kRCkD
1
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Note that Db(k) is based on the estimated execution 
time. Since the actual execution times may be different 
from their estimation, the utilization U(k) can be 
written as 

U (k) = U (k-1) + Ga Db(k)     (1) 

where the utilization gain Ga represents the ratio 
between the change to the actual utilization and its 
estimation Db(k-1). For example, Ga = 2 means that the 
actual change to utilization is twice of the estimated 
change.  The exact value of Ga is unknown due to the 
unpredictability of subtasks’ execution times.  

A task running at a higher rate contributes a higher 
value to the application at the cost of higher CPU 
utilization. However, large CPU utilization may cause 
tasks to miss their deadlines. To ensure that the tasks 
meet their deadlines, the utilization must be kept below 
its schedulable utilization bound [10]. This paper is 
concerned with the problem of ensuring that the 
processor utilization does not exceed the desired 
utilization set point.   The control problem is to design 
a feedback control algorithm that selects the task rates 

 based on the utilization  so that the 
distance between the utilization and the set-point does 
not exceed the desired bound, i.e. 

)(kRi )(kU

ε≤− |)(| sUkU . 
 

4. Hybrid Supervisory Control 
 

This section presents the design and analysis of the 
supervisory controller. Our approach is based on 
supervisory control of hybrid systems [8][9]. 

 



4.1. Control Formulation 
 

Given the model of the real-time system, a 
supervisory controller can be designed to control the 
processor utilization. The continuous control 
approaches presented in [12][14] are not suitable 
because they cannot deal with the discrete nature of the 
task rates. To overcome this problem, we adopt the 
hybrid control approach from [9]. The approach is an 
extension of supervisory control of hybrid systems [8] 
for piecewise linear hybrid dynamical systems with 
disturbances and can be applied to the hybrid model of 
the real-time system that includes unknown execution 
times. The control specifications are formally 
described using finite state machines and include 
safety (e.g. the utilization should remain in region S) 
and eventual execution of actions (e.g. if the utilization 
is in a region A, it must be driven to S in a specified 
time interval). 

The control approach is based on a piecewise linear 
partition of the state space that is used to formulate the 
specifications. For a single processor real-time system, 
we can partition the state space in three regions as 
shown in Figure 1. The partition can be described by a 
mapping (similar to an A/D converter) 

},,{]1,0[: ASB→π  that takes as argument the 
continuous utilization and returns the corresponding 
region. 

 
Figure 1. Partition of the state space 

For all tasks to be schedulable, the controller should 
keep the utilization out of region A. This can be 
achieved by selecting the task rates for the worst-case 
execution times leading to a conservative design that 
will underutilize the system. 

In this paper we take a different approach. We allow 
the utilization to enter region A, but upon detecting 
such an event the controller is invoked to drive the 
utilization back to S in a fixed time interval. The 
advantages of the approach are: (i) it increases the 
average utilization contributing a higher value to the 
application, (ii) the controller is invoked only when the 
utilization is out of the schedulable region reducing the 
control overhead, and (iii) it provides guarantees for 
driving the utilization to the schedulable region. Of 
course, when U(k)∈A schedulability cannot be 
guaranteed which means that for a small fixed time 

interval some tasks may miss their deadlines.  Hence 
HySUCON is more suitable for soft real-time systems 
that may tolerate a small percentage of transient 
deadline misses. 

To ensure that the system is not underutilized, the 
controller is also invoked when the utilization drops in 
region B. In this case, the controller will increase the 
task rates to drive the utilization back to S in a fixed 
time interval. 

To guarantee that the utilization will reach the 
desired region S, the controller must select a suitable 
set of task rates. This is accomplished by solving a 
discrete optimization problem online based on 
utilization feedback.  

 
4.2. Discrete Optimization 
 

If the processor utilization enters region A or B, 
then the controller is invoked in order to change the 
rates and drive the utilization back to the region S. The 
new rates are computed by solving a discrete 
optimization problem. We are using a Best First Search 
(BFS) algorithm. BFS is a greedy algorithm which 
performs a depth first search based on a heuristic. The 
heuristic is defined as the estimated distance to the 
goal, where the goal is defined as the desired change in 
utilization |)(| sUkUU −=∆ . The controller will 
compute the new task rates to minimize the heuristic. 
To reduce the control overhead, the search stops after 
finding a feasible solution that will drive any state 
from A to S that is not necessarily optimal. 

First, we consider the case when ε+> sUkU )( . 
Figure 2 illustrates the discrete optimization algorithm. 
The heuristic is initialized as . Suppose 
that at time k–1, the rate of the task is

Ujih ∆=),(

iT )1( −kRi and 

is the optimal value of the heuristic. If at time k we 
select for , a lower bound for the estimated 
change in utilization will be 

where is the best case 

execution time of . The heuristic is then updated as 

*h
)( j

iR iT

iBCi
j

iij CkRR ))1(( )( −−=α
iBCC

iT
0,*),( <+= ijijhjih αα . The algorithm initially 

computes the heuristic for each task rate . The task 
rate with the lowest evaluation is selected since the 
heuristic measures the estimated distance to the goal. 
The algorithm terminates when  which means 
that the total expected change in utilization is close to 
the goal.  

)( j
iR

ε≤*h

Similarly, if ε+< sUkU )( , the controller will 
increase the utilization by increasing the rates of 

A S 
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selective tasks. An upper bound of the estimated 
change in the utilization is defined as 

where is the worst case 

execution time of and the heuristic is then computed 

by .  

iWCi
j

iij CkRR ))1(( )( −−=β
iWCC

iT

ijhjih β+= *),(

 
Figure 2. The discrete optimization algorithm 

The behavior of the controller is illustrated by the 
finite state machine of Figure 3. When U(k) exits the 
region S to A, an event generated by the system (plant 
event σSA) triggers the controller that selects the new 
rates by solving the BFS algorithm based on the lower 
bounds for the estimated utilization .ijα  The new rates  
will drive the utilization back to S. Similarly, when the 
utilization falls to B, the controller uses the algorithm 
based on the lower bounds .ijβ  

 
Figure 3. Finite state machine of the controller 

 
4.3. Analysis 
 

Feedback algorithms for adaptive utilization control 
are designed so that the closed loop system is stable to 
guarantee that the utilization will converge to the 
desired set-point independent of the unknown task 
execution times. Previous work [12][14] is based on 

the assumption that the set-point is an equilibrium of 
the system. When only a finite set of rates are available 
for each task, the single equilibrium assumption does 
not hold since for different rates the system will have 
different or no equilibria. However, it is still possible 
to design controllers for switching between the 
available rates so that the system stays close to the set-
point. Such behaviors are similar to those of 
conventional stable systems close to equilibrium points 
and can been described using the notion of safety [9].  
Definition 1 Given the system (1), the region 

ε≤− |)(| sUkU is said to be safe if for every U(0)=U0, 
there exists K=K(U0)≥0 such that ε≤− |)(| sUkU  for 
any k≥K. 

This definition implies that the utilization trajectory 
will always remain in an ε-region of the set-point. The 
main challenge for real-time systems in using the 
notion of safety for control design is that the utilization 
gain Ga is not known. For such uncertain systems, one 
could design the controller for the worst case execution 
times. Such a design would result in underutilization of 
the processor to allow for a large safety margin.  

To overcome these difficulties, our approach 
employs a notion of practical stability, which can be 
viewed as a relaxed definition of safety.  
Definition 2 Let ε>− |)(| sUkU  at time step k for a 
fixed parameter ε. If there exists finite l≥0 such that 

ε≤−+ |)(| sUlkU  the system (1) is said to be 
practically stable. 

The parameter l corresponds to the “rising-time” and 
as in conventional control design it is desirable to 
minimize l while keeping a small overshoot. 

We define the lower utilization and upper utilization 
levels that are guaranteed to be achieved independent 
of the actual execution times as 

.maxmin
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Theorem 1 There exist control policy for selecting the 
task rates for the system (1) so that the closed loop 
system is practically stable if ε+< sUU  and 

.ε−> sUU  

Proof The condition ε+< sUU  )( ε−> sUU  
guarantees that for every utilization AkU ∈)( 0 (or B) 
there exist task rates  and integeriR lkkk ≤−< 00,  so 
that ε+< sUkU )(  ).)(( ε−> sUkU  Therefore, for 
any value U(k) there always exists a combination of 
rates R(k) = [R1(k),...,Rn(k)]T that will drive the 
utilization towards in the ε-region of the set-point . sU
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Practically, the parameter ε must be selected large 
enough to avoid oscillations of the utilization between 
the regions A and B. The oscillatory behavior is also 
related to the parameter l that specifies how fast the 
utilization should return the region of the set-point. 
The presented BFS algorithm will achieve that in one 
sampling period (i.e. l = 1). As in conventional control 
this could lead to overshoot and oscillatory behavior. 
An alternative approach could be to compute the 
change in utilization based on an estimated value of the 
utilization gain Ga instead the best case and worst case 
execution time. This will decrease the oscillation but 
will increase the time l the utilization will reach the 
schedulable region. Due to length limitation, this paper 
focuses only in the case when l = 1. 

Although, the safety conditions described above 
guarantee the existence of an appropriate control 
policy, we have to analyze the proposed algorithm and 
develop guidelines for the selection of the parameters. 
In the following, we assume that ε+> sUkU )(  and 
the control task is to reduce the utilization. The case 

ε−< sUkU )( is symmetrical and is omitted. 
First, we analyze the BFS algorithm vs. an 

exhaustive search (ES) algorithm that at every 
sampling period computes the expected utilization for 
all possible combinations of task rates and selects the 
one with the closer distance to the set-point. The 
conditions of Theorem 1 imply that the ES algorithm 
can always find an optimal combination of task rates. 
Let  denote the optimal estimated change in 
utilization derived using the ES algorithm, then we 
have  (and further 

is minimized).  

|| *
ESU∆

ε+<∆− sES UUkU ||)( *

|||)(| *
sES UUkU −∆−

Theorem 2 Assume that Theorem 1 holds and let 
 denote the expected change in utilization 

derived using the BFS algorithm. The BFS algorithm 
will also reduce the utilization so that 

. 

|| *
BFSU∆

ε+<∆− sBFS UUkU ||)( *

Proof Consider the following two possible cases: (i) 
ES decreases the rates for all tasks, i.e. 

. In this case, because of its 
greediness property, BFS can select the new rates so 
that . In practice, our algorithm will 
stop the search if 

niRi ,,1,0 K=<∆

|||| **
ESBFS UU ∆≥∆

ε+<∆− sBFS UUkU ||)(  to reduce 
the overhead. (ii) ES decreases the rates of some tasks 
while increasers some others. In this case, since BFS 
can only decrease the rates, we have 
also . Therefore, in both cases, 

. 

|||| **
ESBFS UU ∆≥∆

ε+<∆− sBFS UUkU ||)( *

The case can be proved in a 
similar manner. 

ε−>∆− sBFS UUkU ||)( *

The potential drawback of the BFS vs. the ES 
algorithm is related to the oscillation of the utilization. 
The ES and BFS algorithms differ on the minimum 
change in utilization they can achieve. Specifically, we 
have |  since the BFS 

algorithm will either only increase or only decrease the 
rates. Hence, the BFS algorithm may overshoot the set-
point especially since the change in utilization is based 
on the best case execution times.  

|min||min *
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 An exhaustive search algorithm is not suitable for 
real-time systems since it is exponential, i.e. O(mn) 
where n is the number of tasks and m is the maximum 
number of  task rates for a task. Our control algorithm 
is based on a best-first search using a heuristic. From 
Figure 2, the while loop is executed at most n times. 
Since each time we have to sort the values of the 
heuristic, the total time complexity is O(n3m2) 
(depending on the sorting algorithm). Practically, the 
algorithm is much faster since it usually stops before 
searching all tasks and only negative (positive) values 
of the expected change )( ijij βα in utilization are used.  
The controller overhead is also evaluated using the 
simulation and experimental results. 
 
5. Simulation Results 
 
5.1. Simulator Environment 

 
We have designed an event-driven simulator using 

Model Integrated Computing and the Generic 
Modeling Environment (GME) tool [6].  The simulator 
implements the real-time system controlled by 
HySUCON, the utilization monitor, and the rate 
modulator. The tasks are scheduled using the Rate 
Monotonic Scheduling (RMS) algorithm [11]. The 
environment provides a visual notation for specifying 
the tasks. Simulation code is generated automatically 
from the task specification. The advantage of the 
simulation framework is the automatic code generation 
of the controller. This is accomplished by an 
interpreter engine that prior to simulation, generates 
the controller code.  

 
5.2. Workloads 

 
We use two different workload/system 

configurations in our experiments. The workload 
parameters are characterized by experimentation and 
are used by the event-driven simulations in order to 
compare the performance with the experimental 



results. SIMPLE is a workload consisting of three 
tasks as shown in Table 1. All three tasks are floating 
point matrix multiplications with each task operating 
the same function but on matrices of different 
dimensions. Task A performs matrix multiplication on 
two matrices of dimensions 100x200 and 200x100, 
task B on matrices of dimensions 100x300 and 
300x100, and task C on matrices of dimensions 
100x400 and 400x100. The tasks were executed on a 
2.8 GHz, Intel Pentium IV processor running Red Hat 
Linux. Execution time statistics were obtained using a 
high resolution timer and are shown in Table 1. Each 
task executed separately and the data was collected 
over 5000 samples.  The wide range observed in the 
execution times can be attributed to the cache misses 
and pipelined architectures of modern day processors. 

In the simulation environment, tasks are defined 
using the parameters in Table 1. The execution time 
for each task at every sampling period is drawn from a 
uniform distribution between its best- and worst-case 
execution times in our profiling experiments. The 
sampling period was 600 ms in both the simulation and 
the experimental setup. 

The second configuration, MEDIUM that was used 
only for the experimental results, simulates a more 
complex workload consisting of 10 tasks. The tasks are 
also matrix multiplications of matrices different 
dimensions. Their parameters were obtained as in 
SIMPLE. 

Table 1. Task parameters in SIMPLE 
 Task A Task B Task C 

iBCC  (ms) 21 31 43 

iWCC  (ms) 68 86 81 
j

iR   (KHz) 1/75 
1/100 
1/200 
1/300 
1/400 
1/500 

1/75 
1/100 
1/200 
1/300 
1/400 
1/500 

1/75 
1/100 
1/200 
1/300 
1/400 
1/500 

)0(iR (KHz) 200 200 200 

 
5.3. Baselines 

 
We compare HySUCON against two baseline 

algorithms, OPEN and FC-U. OPEN is an open-loop 
algorithm that uses fixed task rates. It assigns task rates 
a priori based on estimated execution times so that the 
processor utilization is near the set-point. As it can 
been seen from the task parameters in SIMPLE, it is 
not possible to establish tight bounds on the task 
execution times. OPEN will cause underutilization 
when execution times are overestimated and over-

utilization when they are underestimated. As a baseline 
OPEN allows us to evaluate the benefits of a 
supervisory controller. 

FC-U uses a single input single output PI controller 
presented in [12]. FC-U also computes the changes to 
task rates based on measured utilization but assumes 
that the task rates take values on a continuous set (i.e. 

max.min. iii RRR ≤≤ ).  FC-U can be used in our case by 
quantizing the continuous task rates computed by the 
controller to the closest available value. As a baseline 
FCS allows to compare the supervisory controller with 
simple linear control. 

 
5.4. Real-Time Simulation for SIMPLE 

 
This section provides the simulation results for the 

SIMPLE task scenario obtained using the event-driven 
real time simulator and compares HySUCON’s 
performance with OPEN and FC-U controller. CPU 
utilization set point was set to 0.69 and ε to 0.10  
Simulations run for 60 sec, with sampling being 
performed at every 600 ms ( ).  
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sT
Figure 4 shows the CPU utilization .  

changes as the execution time of the periodic tasks 
varies randomly. For example, at time , the 
processor is underutilized at 0.57. HySUCON 
responds to the deviation from the utilization set point 
by increasing task A’s rate from 1/400 to 1/300. As a 
result the utilization increases from 0.57 to 0.74 in the 
next time step. 
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Figure 4. CPU Utilization for SIMPLE 

Similarly, in the case of over-utilization the 
controller will decrease some of the rates. For 
example, at , where the utilization is 0.83, 
HySUCON reduces rate of task B from 1/200 to 1/300, 
which results in a subsequent reduction in utilization to 
0.64 in the next time step. The average utilization 
0.704 is with standard deviation 0.054. Figure 5 shows 
the task rates selected by the controller.  

sT21



In contrast, Figure 6 shows an overloaded processor 
under OPEN unable to adapt to the workload 
conditions. As a result, CPU utilization levels at 100%. 
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Figure 5. Task Periods for SIMPLE 

Figure 7 and Figure 8 illustrate FC-U’s performance 
for the SIMPLE workload. While the FC-U controller 
responds to both over and under utilization by 
selecting different rates, its performance is limited by 
the discrete rate set provided by the user. In the case of 
discrete rates, the utilization is not guaranteed to 
converge to the set point and FC-U performs much 
worse than HySUCON. A larger and finer rate set 
would reduce the quantization error that occurs when 
FC-U quantizes its chosen rate to the user defined rate 
and a lower quantization error would lead to better 
performance. 
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Figure 6. OPEN CPU utilization 

 
6. Experimentation 
 
6.1. Experimental Setup 
 

In our experimental setup, we evaluated a real-time 
application whose task rates can be changed discretely 
using callbacks from a controller. The distributed 
system setup consists of 2 Intel Pentium IV, 2.8 GHz 
processors running Red Hat Linux. The client 

processor performs CPU intensive computations and 
sends utilization updates every sampling period to the 
remote server. HySUCON residing on the server 
receives these updates from the client and computes 
the new task rates. It communicates the new rates to 
the rate modulator, which subsequently changes the 
rates.  
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Figure 7. FC-U CPU Utilization 
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Figure 8. FC-U Task Periods 

We assumed that the application is implemented as a 
Half Sync/Half Async [18] with  a queue receiving 
events at different task rates. The setup has the 
following components: (i) A Half Sync/Half Async 
setup as a real-time application, (ii) a component for 
sensing the resource utilization and sending it to a 
controller, and (a) a component for accessing new task 
rates from the controller.  
Real-time application:  Our real-time application is 
deadline driven by messages and the processing of 
each message has a deadline. The messages are 
inserted into a queue at periodic intervals of time 
dictated by the periods. The messages are then 
processed by any thread (every thread has a equally 
likely chance of processing the message) waiting on 
the queue and performs the intended job (matrix 
multiplication in our setup).  



Sensing resource-utilization: After every message is 
processed, the thread which processes a request senses 
the CPU utilization on the machine and sends to a 
controller which runs on a different machine. We used 
a distributed middleware (ACE/TAO) to implement 
this, since it provides all the required mechanisms. 
Accessing New Task Rates: Our experimental setup 
also has a provision to contact the controller to receive 
new task rates at periodic time intervals. The new task 
rates are computed by the controller based on the latest 
utilizations received from the application by the 
controller. 
 

6.2. Experimental Results for SIMPLE 
 

This section discusses the experimental setup results 
obtained from HySUCON for the SIMPLE workload. 
CPU utilization set point  was set to 0.69 and ε to 
0.10.  
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 Figure 9. CPU Utilization for SIMPLE 

Task execution times vary dynamically at run time 
under the SIMPLE configuration. As a result, the client 
CPU utilization varies dynamically, as shown in 
 Figure 9. At time , the processor faces 
over-utilization at 0.90, as a result of which, the 
controller decreases  the rate of task  A from 1/200 to  
1/75. This, results in a decrease in the utilization to 
0.68 in the next time instant. Similarly the controller 
reacts to under-utilization by increasing  the rate of  A 
from 1/75  to 1/200  at , where the CPU 
Utilization is 0.9. The average utilization is 0.673 and 
the standard deviation is 0.053. The task rates are 
given in Figure 10. 
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Figure 10. Task Periods for SIMPLE 

 
6.3. Experimental Results for MEDIUM 
 

The MEDIUM task scenario consisting of 10 tasks 
demonstrate the performance of HySUCON for larger 
workloads. The same client-server setup was used as 
described in the previous section. Input parameters 
for the controller algorithm, such as best-case and 
worst-case execution times for the 10 tasks were 
obtained from experiments conducted by running the 
same 10 tasks one at a time. As shown in Figure 11, 
the CPU utilization varies due to the dynamic task 
execution times. HySUCON controls the utilization in 
a region of the set-point. For instance, at time , 
the client reports under-utilization at 0.8277 and the 
controller responds by decreasing the task rates which 
results in an decrease in utilization to 0.76. Similarly 
the controller reacts to over-utilization, as seen at time 

where the utilization drops to 0.58 by increasing 
the rates and hence the utilization to 0.65. The average 
utilization is 0.997 and the standard deviation is 0.054. 
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Figure 11. HySUCON CPU Utilization 

 
 



 
6.4. Control Overhead 
 

To estimate the run-time overhead of the controller, 
we measured the execution time of the controller 
component running on the server. In the simulations 
with the SIMPLE workload on a 2.8 GHz, Intel 
Pentium IV processor, the average controller overhead 
was 0.033 msec.  In the HySUCON experimental 
setup, the controller overhead was calculated as the 
interval from the time the server receives the utilization 
to the time the controller compute the new task rates. 
For the SIMPLE workload, the average overhead was 
0.069 ms and for the MEDIUM scenario the average 
overhead was 0.155 ms. 

 
7. Conclusions 
 

We have presented a hybrid supervisory control 
algorithm for feedback control real-time scheduling of 
single-processor real-time systems. Our theoretical 
analysis and are experimental results demonstrate the 
algorithm provides robust utilization bounds in the 
presence of varying execution times. Future work 
includes adapting the method for task admission 
control by including rates with zero values as well as 
the extension of the approach to multi-processor 
systems with end-to-end tasks. 
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