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Abstract
Non-control data attacks have become widely popular for circumventing authentication mechanisms in websites, servers, and
personal computers. These attacks can be executed against cyber-physical systems (CPSs) in which not only authentication
is an issue, but safety is at risk. Furthermore, any unauthorized change to safety-critical variables within the software may
cause damage or even catastrophic consequences. Moving target defense techniques such as data space randomization (DSR)
have become popular for protecting against memory corruption attacks such as non-control data attacks. However, current
DSR implementations rely on source code transformations and do not stop critical variables from being overwritten, only
that the new overwritten value will be vastly different than expected by the attacker. As such, these implementations are often
ineffective for legacy CPS software in which only a binary is available. The problem addressed in this paper is how do we
protect against non-control data attacks in legacy CPS softwarewhile ensuring that we can detect instances of variable integrity
violations. We solve this problem by combining DSR at the binary level with variable comparison checks to ensure that we
can detect and mitigate any attacker attempt to overwrite safety-critical variables. Our security approach is demonstrated
utilizing an autonomous emergency braking system case study.
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1 Introduction

The design of safety-critical infrastructure is widely chang-
ing with the introduction of cyber-physical systems (CPSs).
Traditionally isolated and standalone systems are becoming
connected, utilizing communication channels to form dis-
tributed systems. These changes are beneficial for increasing
the precision, consistency, and reliability of computations by
allowing for more sophisticated control algorithms to be uti-
lized. However, with the newly connected state of CPS, the
attack surface is also expanded. Systems were not originally
designed with remote cyber-attacks in mind, creating a vast
array of problems that could arise from adversary exploita-
tion. Instead of necessitating physical access, adversaries
can now gain access and exploit software remotely to inflict
physical consequences. In the case of autonomous vehicles,
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controller compromises can lead to vehicle crashes, passen-
ger data exfiltration, and destination changes.

Vulnerabilities often exist in legacy CPS software, and it
is difficult to integrate state-of-the-art security features for
hardening purposes. As such, several attack vectors exist
that are less common in traditional information technology
systems. One commonly utilized exploit is a non-control
data attack. Instead of code injection attacks and code reuse
attacks which focus on redirecting control flow, non-control
data attacks focus on utilizing vulnerabilities like buffer
overflows to alter adjacent variables. It is popular to use
this technique for bypassing password authentication mech-
anisms, but in CPS this can extend to altering safety-critical
variables leading to potentially fatal consequences. Data
space randomization (DSR) has become a popular moving
target defense (MTD) technique for protecting against non-
control data attacks. By altering the representation of critical
variables at runtime, any attempt to overwrite will result in
an outlier data value.

In existing DSR approaches, success is defined by the
translation of adversary injected values into outlier data.
However, if these data are still of a valid representation, it
will not result in any program exceptions and even could
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possibly satisfy existing detection constraints if the trans-
lated value happens to fall within a defined safe range.
Additionally, existing approaches rely on source code trans-
formations, but legacy software usually can only be accessed
in a binary format. Due to the safety-critical nature of CPS
and sheer volume of legacy code, these existing solutions fall
short of being effective, allowing for unsafe repercussions to
occur from cyber-attack attempts. As such, it is important
to develop a methodology for performing DSR at the binary
level, allowing for a dynamic randomization process at run-
time, and providing re-randomization capabilities to further
hinder adversary reconnaissance efforts and maintain avail-
ability.

In CPS, timing is a critical component to maintain safe
behavior. A majority of software consists of real time con-
straints that are relied upon for the integrity of scheduling
processes. Regardless of hard or soft real time constraints,
a failure in meeting deadlines can result in dangerous
consequences, especially in safety-critical CPS such as
autonomous vehicles, aircraft, and medical devices. There-
fore, when considering adding defense mechanisms such
as DSR, it is not only important to be effective against
cyber-attacks, but it is equally as important to minimize
the overhead as much as possible, limiting the likelihood
of missed deadlines.

The main problem that arises in this paper is how do we
protect against non-control data attacks at the binary level
while determining variable integrity violations. Our hypothe-
sis is that by utilizingDSR in combinationwith static analysis
and variable redundancy checking, we can protect against
non-control data attacks, while detecting instances of vari-
able integrity violations. Furthermore, by using variable key
storage within program memory we hypothesize that we can
limit the overhead of DSR, maintaining real time constraints
in safety-critical CPS. Finally, by detecting variable integrity
violations, we can implement reconfiguration to transition
execution to a new backup controller to ensure that safe oper-
ation, and availability is maintained within the CPS.

In the past work, we developed a three-stage control
architecture consisting of attack protection, detection, and
recovery [35]. In this previous work, we utilized instruction
set randomization (ISR) and address space randomization
(ASR) to protect against code injection and code reuse
attacks. Furthermore, we built in a reconfiguration scheme to
ensure that when an attack occurs, we can detect and recover
to a backup software version before unsafe CPS operation
occurs. However, because these MTD techniques fail to pro-
tect against non-control data attacks, DSR becomes a critical
defense. We create a software DSR implementation utilizing
dynamic binary translation at runtime to randomize criti-
cal variables, and derandomize them for memory accesses.
Additionally, detection capabilities are integrated to lever-
age a variable redundancy structure to identify instances of

attacks. Finally, we integrate our approach with reconfigu-
ration to transition execution to a backup safety controller
during an attack attempt. The contributions of our paper are
as follows:

– We develop a DSR runtime approach using dynamic
binary translation for the purpose of randomizing, deran-
domizing, and detecting cyber-attacks at runtime

– We develop an attack detection approach to utilize a
comparison of redundant variables with different ran-
domization keys to identify a compromise of integrity.

– Wedevelop a reconfiguration scheme to ensure that safety
and availability are maintained during a cyber-attack
attempt.

– We implement our security architecture on a developed
hardware in the loop testbed using a combination of
off-the-shelf embedded computing hardware and open-
source simulation software.

– We present an autonomous vehicle case study to demon-
strate the effectiveness of our security architecture in
limiting the impact of cyber-attacks in the context of an
advanced emergency braking system (AEBS) scenario.

Compared with our preliminary work with DSR [34], this
paper provides significant extensions with regard to the static
analysis and evaluation of our approach.With regard to static
analysis, we provide an in-depth analysis of the various sce-
narios in which our approach will work, while providing an
example illustration for the reader to follow the process.With
regard to evaluation, we have upgraded our hardware-in-
the-loop testbed to support more sophisticated autonomous
vehicle scenarios with the addition of the CARLA open-
source simulator. Finally, we have implemented caching
and hashing techniques to reduce performance overhead and
improve the scalability of our approach.

The rest of the paper is organized as follows: Section 2
introduces the background relating to DSR and the relevant
attack surface of safety-critical CPS, Sect. 3 describes the
DSR approach for protecting the integrity of program vari-
ables, Sect. 4 describes the runtime process for detecting
non-control data attacks, Sect. 5 presents an implementa-
tion of our integrated DSR architecture, Sect. 6 utilizes an
autonomous vehicle case study to demonstrate our DSR
implementation, Sect. 7 presents related work, and Sect. 8
provides concluding remarks.

2 Problem formulation

With the introduction of CPS such as connected and
autonomous vehicles, traditionally standalone systems are
nowbecoming significantly reliant on software infrastructure
and remote communication interfaces. Current automobiles
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include over 100 million lines of code and 50–70 electronic
control units (ECUs), similar to the level of a F35 fighter jet
[11]. Due to the large investment required for redesigning
a system from the ground up, automotive companies often
attempt to build security on top of existing infrastructure,
leaving a large amount of legacy code in the process. As
such, attackers can leverage the large attack surface and lack
of CAN bus authentication to gain entry to automotive net-
works, pivot to safety-critical ECU’s, and disrupt the physical
actuation of the vehicle.

One of the most significant vulnerabilities discovered
from legacy code is the buffer overflow. Buffer overflows
result from the absence of a limitation of the length of stored
input in the C and C++ language, leading to the overwriting
of adjacent memory locations on the stack. By overwriting
adjacent memory locations, adversaries can inject instruc-
tion payloads directly (code injection [33]), redirect control
flow to existing functions in the program (code reuse [37]),
and overwrite adjacent program variables (non-control data
attacks). Unlike code injection and code reuse attacks, it is
more difficult to protect against and detect a non-control data
attack due to the minimal change in program execution.

Through vulnerabilities like buffer overflows, attackers
can manipulate non-control program variable data to alter
program behavior without altering control flow. One com-
mon technique utilized to disrupt these types of attacks is
DSR. DSR changes the internal or external representation
of an application’s data in such a way as to ensure that the
semantic content is unmodified but unauthorized use, access,
or modification is hindered [32]. For this to be accomplished,
the format, syntax, encoding, and other properties of the data
can be randomized.

As such, DSR acts similarly to ISR in using a key-based
randomization and de-randomization process to encode vari-
able data sensitive to attack. Each variable data object is
randomized before it is written to memory and is deran-
domized after it is read from memory. Consistent with the
ISR process, the randomization process can be accomplished
by using an XOR operation with a randomization key [6,9].
Additionally, there is also the possibility of using other sym-
metric encryption algorithms such as those in theAES family
to add further security to the application. DSR provides both
the ability to use a common shared randomization key, but
for enhanced security, each variable should be mapped to a
unique randomization key.

2.1 Threat model

An exemplary vehicle system model includes six compo-
nents: a sensor cluster, actuator cluster, driving controller,
telematics control unit (TCU), remote function actuator
(RFA), and RFID sensor. The sensor cluster provides crit-
ical data representing the current state of the vehicle such as

Fig. 1 Case study

the speed, and distance to upcoming objects (lidar). The actu-
ator cluster provides the ability to manipulate the vehicular
acceleration through the throttle and brake. The driving con-
troller is responsible for performing computation based on
the provided sensor cluster input and outputting commands
to the actuation cluster. In this paper, the driving controller is
an AEBS controller that is responsible for braking the vehi-
cle to avoid colliding with upcoming objects. Both the TCU
and RFA are responsible for providing the external interface
for the vehicle. The TCUmonitors the various metrics of the
system, transmitting data to a remote operating station for
maintenance and emergency purposes. The RFA is respon-
sible for determining the presence of a key fob for allowing
the vehicle to be turned on.

In the system model, the sensor cluster, actuator clus-
ter, and driving controller are on a safety-critical CAN bus
network, including both communication authentication to
prevent spoofing, and integrity checking within the driving
controller to ensure that utilized sensor data are accurate.
On the other hand, the TCU and RFA communicate with the
driving controller through a low-priority CAN bus interface.
Since these components are the most vulnerable to remote
attacks due to being connected to external communication
channels, the safety-critical and low-priority communication
buses protect against the TCU and RFA directly controlling
the sensor or actuator ECU clusters. However, to detect the
presence of the key fob, the driving controller constantly
polls for status updates from the RFA. This communication
is authenticated to prevent message spoofing, but there is
a memory corruption (buffer overflow) vulnerability in the
driving controller that provides an opportunity for memory
corruption attacks.

The attack model for this paper focuses on a non-control
data attack on a vehicle network. A non-control data attack
is defined as an exploitation technique leveraging a buffer
overflow vulnerability to overwrite adjacent variables to a
non-bounds checked buffer, resulting in altered computa-
tion and control without the injection or redirection of code.
Furthermore, these attacks are highly popular for remote
exploitation, especially in the autonomous vehicle domain
[30]. As such, an exemplar use case consists of the following
attacker process flow. An adversary compromises a vehicle
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TCU through the remote cellular interface and consequently
pivots to hijack the RFA. With access to a direct communi-
cation channel with the driving controller, the adversary can
craft a message payload to take advantage of the memory
corruption vulnerability and alter control. At this point, an
adversary can perform a non-control data attack where they
can leverage the buffer overflow to overwrite adjacent safety-
critical variables in the driving controller. As a result, at the
next control iteration, the computation logic will utilize the
modified variables, which leads to altered computation and
actuationwithin the driving controller. By following this pro-
cess, the goal of the adversary is to utilize the non-control
data attack to cause the vehicle to perform unsafe behav-
ior. At the same time, the goal of the defender is to prevent
the non-control attack from succeeding while maintaining
integrity of the driving controller software.

Four assumptions aremade for our approach to be success-
ful. First, it is assumed that the sensor and actuator clusters
are fully secure. The driving controller ECU may contain a
buffer overflow vulnerability utilized for control hijacking,
while the TCU and RFA may contain vulnerabilities allow-
ing for key fob message spoofing. Second, the attacker has
knowledge of the relative address of a safety-critical variable
relative to the start of the input buffer. Third, the attacker
has knowledge of the underlying software architecture of
the safety-critical controllers, allowing them to target the
most impactful variables. Finally, the software cannot uti-
lize dynamic memory allocation. These assumptions are not
impractical given examples demonstrated in the literature
[29] as well as popular CPS standards [3,23].

In the rest of this paper, we discuss a developed security
architecture aimed at preventing the vulnerabilities discussed
in our attack model. The objectives of our security architec-
ture include the following:

1. Any implemented software must maintain safe and reli-
able performance of the CPS. This includes minimizing
the security architecture overhead and ensuring that all
real time deadlines are met.

2. Implement reliable detection mechanisms for monitoring
and flagging attack events.

3. Implement scalable defense mechanisms that can be
extended to large programs.

To evaluate the effectiveness of our architecture within
the context of an autonomous vehicle case study, we utilize
a developed hardware-in-the-loop testbed. We further uti-
lize physical metrics such as vehicle position combined with
software metrics like performance overhead in both normal
operation and attack scenarios. Finally, to conclude that our
hypothesis is true two observations need to be clear from the
results: (1) The performance overhead needs to be minimal
enough to ensure that execution times do not exceed designed

Fig. 2 DSR static analysis process

real time constraints and (2) vehicles need to follow safe driv-
ing behavior, stopping completely before colliding with the
parked vehicle on the road. In the event that both of these
observations are true, we can conclude that our architecture
is successful.

3 Static analysis for DSR

Our DSR approach is designed to operate on a native
binary, eliminating the need for source to source transforma-
tions while providing the capability for automated runtime
randomization and derandomization. Static variables, local
variables, and heap variables can all be randomized for the
purpose of protection. In cases of large programs, local vari-
ables adjacent to input buffers are prioritized in an effort to
address non-control data attacks. Furthermore, by identify-
ing the randomization variables of interest, we independently
assign unique masking keys to prevent adjacent variables
from being of the same encoding. In the rest of the section,
we describe the main segments of our DSR static analy-
sis approach: binary lifting, points-to analysis, and graph
integrity checking.

Our DSR approach is illustrated using an exemplary
vehicle driving controller component (Fig. 3). This vehi-
cle controller has several safety-critical variables that require
randomization such as distance, speed, target speed, throttle,
brake, orientation, target angle, steering, and key fob pres-
ence. Any alteration in any of these variables can result in
direct safety violations in the autonomous vehicle driving
behavior. As such, in the event of optimizing performance,
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Fig. 3 DSR static analysis example

static analysis should prioritize the variables that reflect the
most damage to the overall system and surround environment
in the event of their compromise.

The process of our static analysis is as follows: we start
with source code for our driving controller, we then com-
pile the source code into an executable binary, then we lift
the binary code to an intermediate representation, we per-
form points-to analysis to create a points-to analysis graph
of the binary, and finally we extract a bipartite graph from
the points-to analysis graph representing the relationships
between store and load instructions, and memory locations.

It is important to note that for our approach to work,
instructions pointing to a vulnerable buffer memory location
cannot also point to adjacent critical variable locations. Addi-
tionally, instructions cannot point to other instructions, and
memory objects cannot point to instructions or other mem-
ory objects. The only valid case is an instruction pointing to
a memory object. Through analysis of several example CPS
programs, we have found this fact to be true. As such, we
make this assumption throughout the rest of our paper.

3.1 Binary lifting

In contrast to performing source-to-source transformations
in C programs, it is difficult to manipulate and analyze vari-
able instances in binary code. For the purpose of general
analysis, it is optimal to convert the binary program into an
intermediate representation (IR) format. The low-level vir-
tualmachine (LLVM) compiler includes an IR representation
called LLVM bitcode, which we leverage for our analysis
[27].

To lift a native binary to LLVM bitcode, we utilize an
open-source tool called Mcsema [19,28]. Mcsema combines
control flow recovery [10,20] and an instruction translation
algorithm to directly convert instructions intoLLVMbitcode.

3.2 Points-to analysis

The nodes extracted from the points-to analysis graph can
either be a load or store instruction, or a memory region.
As such, it is important when designing the data random-
ization process to understand the relationship between these
different nodes. Due to being computationally undecidable,
pointer analysis algorithms generally are approximations that
provide varying degrees of precision and efficiency [36].
For our approach, we rely on a context-insensitive inter-
procedural points-to analysis implementation [2] utilizing an
open-source static analysis tool called SVF [39].

After points-to analysis is performed, an output is gen-
erated as a points-to analysis graph (PAG), after which
relationships between load and store instructions and mem-
ory regions are extracted. With this information fed in as
input, unique 64-bit randomization keys are generated at
load time for each respective variable object. With 64 bits
of entropy, 264 possible randomization keys can be gener-
ated, which provides a sufficient number of combinations
for programs with a large amount of variables.

3.3 Pointer scenarios

When analyzing a legacy software binarywith points-to anal-
ysis, three possible scenarios can occur. The first scenario
is that every encountered load or store instruction can only
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point to one memory location. The second scenario is that it
is possible for a load or store instruction to point to multiple
memory locations, but any instruction pointing to a vulner-
able buffer will not point to any adjacent memory location.
The final scenario is an extension of scenario 2 in that instruc-
tions can point to multiple memory locations but instructions
pointing to a vulnerable buffer will also point to adjacent
memory locations.

In order for our DSR approach to function correctly, sce-
narios 1 and 2 can occur, but scenario 3 cannot. As such, for
every load or store instruction pointing to a buffer memory
location where a buffer overflow can occur, those respective
instructions cannot also point to another adjacent memory
location. However, in the event that every instruction will
point to a single memory location, or when an instruction
does not point to a vulnerable buffer location but points to
multiple other memory locations, our DSR approach will
work. For all C/C++ controllers tested throughout our work,
we have verified that scenario 1 has been the only case to
occur. However, it is possible for the other two scenarios to
occur in certain circumstances.

Static analysis traditionally overapproximates a set of
possible memory locations, meaning that if there is a non-
bounded buffer, the analysis results will reflect that the
instructions accessing that buffer have the potential to access
all adjacent regions. However, due to bound analysis being
included in the SVF analysis tool, the original analysis results
will be pruned to reflect expected behavior, meaning that any
instruction accessing the buffer will only be represented as
accessing the respective buffer memory location [26].

For DSR, the main goal is to prevent a buffer overflow
from effecting the integrity of an adjacent variable. The fun-
damental technique utilized to accomplish this goal is to
encrypt every adjacent variable with a different key so that
any attempt to overwrite will result in an outcome wildly
different than expected. However, even though overapproxi-
mation is pruned in our PAG results, certain software designs
can result in the buffer access instructions also being stated to
access adjacent variables. This case can occur when a pointer
in a C/C++ program is utilized to access multiple data struc-
tures including the buffer. All three scenarios are illustrated
with an example in which there are two integer variables M
and N, a pointer p and a buffer B, which is susceptible to a
buffer overflow attack.

In the first scenario, all instructions referencing variables
M, N, and B will point to three disjoint memory locations.
As such, when assigning randomization keys for our DSR
approach, three different keys will be assigned. Therefore,
in the case of a buffer overflow attack, variables M and N
will not be of the same representation as buffer B, meaning
that any overwriting of adjacent variables will result in a
wildly different outcome than expected by the attacker. Thus,

Fig. 4 Scenario 1

Fig. 5 Scenario 2

our DSR approach will work in this case. This scenario is
illustrated in Fig. 4

In the second scenario, there will be a pointer P that points
to variables M and N, resulting in a store instruction in the
PAG referencing both variable memory locations. However,
this pointer will not access buffer B, meaning that the store
instruction in the PAGwill not reference the buffer Bmemory
location. When assigning randomization keys for our DSR
approach, instead of assigning three unique values such as
in scenario 1, only two unique values will be assigned: one
key for the variable M and N memory locations, and a dif-
ferent value for the buffer B memory location. As such, in
the case of a buffer overflow attack, variables M and N, even
though they have the same randomization key, will still not
be of the same representation as buffer B, meaning that any
overwriting of adjacent variables will still result in a wildly
different outcome then expected by the attacker. Thus, our
DSR approach will still work in this case. This scenario is
illustrated in Fig. 5

In the third scenario, there will be a pointer P that points
to variables M and N as well as buffer B, resulting in a
store instruction in the PAG referencing all three memory
locations. When assigning randomization keys for our DSR
approach, only one value will be assigned, resulting in all
three memory locations utilizing the same key. In the case
of a buffer overflow attack, since all three memory locations
utilize the same randomization key, any overwriting of M
and N from B will act like no randomization exists since the
new value will be derandomized with the same key as was
randomized with from the buffer. Therefore, in this case our
DSR approach will not be able to protect variables M and N
successfully. This scenario is illustrated in Fig. 6
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Fig. 6 Scenario 3

Fig. 7 Runtime process

4 Runtime randomization

The main vulnerability addressed by DSR is the over-
writing and manipulation of adjacent variable data to input
buffers [7]. The unique randomization and derandomization
of individual variables ensure that if the attacker overwrites
data, the semantic effect in the program will not be of the
intended nature. For example, in the case of an adversary
overwriting an adjacent target speed variable for an automo-
bile, the desired goal could be increasing the value from 65
to 70 mph. In this case, the adversary will leverage a buffer
overflow to insert the value 70 into the target speed variable
memory location on the stack. However, in the case of DSR,
the input buffer and target speed variable will have different
randomization keys. Due to this fact, when the target speed
is read from memory, it will first be derandomized with a
different randomization key than what was utilized for writ-
ing, and the resulting value read will not be 70. An important
note is that the resulting data values may still be of a valid
format, meaning that an exception will not occur. However,
the masking of variable values makes it easier for detection
algorithms to determine the presence of a cyber-attack.

The primary defense mechanism utilized in our approach
is the randomization and derandomization process of DSR
which is illustrated in Fig. 8. This means that when a vari-
able that is written to memory encoding will first take place

with a unique randomization key, and when the variable is
consequently read from memory it will be derandomized to
the true value with the same randomization key before use.
This means that there must be two steps inserted into the
program during variable access: a randomization step during
variable stores and a derandomization step during variable
loads. At load time, the PAG is utilized to generate a key
hash table based on the unique variables encountered during
static analysis. For each variable, two randomization keys
will be generated: one for the default variable and one for
a redundant variable instance. When a variable load state-
ment is encountered in the program, the respective variable
key will first be looked up from the hash map based on
the encountered address and encoded with an XOR oper-
ation. Furthermore, this table will additionally be accessed
during the derandomization stage to look up the respective
randomization key to perform a subsequent XOR operation
on the encoded value. Since the XOR operation is a sym-
metric encoding technique, performing this second operation
will convert the encoded variable back to the true value. It
is important to note that when encoding, one XOR instruc-
tion is necessary to be inserted in the program before a store
instruction, and after a load instruction an XOR instruction is
inserted for decoding purposes. Additionally, encoding and
decoding operations are only executed on register values, and
not on the respective data in memory.

A non-control data attack consists of an adversary over-
writing an adjacent variable to an existing input buffer by
leveraging a buffer overflow vulnerability. During a suc-
cessful attack, the variable will be manipulated to a value
intended to accomplish the adversaries program goal. When
this variable is manipulated, DSR can cause the variable to
be different than the what the adversary expects, resulting in
unintended program behavior. However, in contrast to other
MTD techniques such as ISR, and ASR, manipulating the
variable with DSR enabled will not result in an exception
due to the variable data still being of a valid format. This
means that detection is not as simple as just inserting a sig-
nal handler, but a more active detection mechanism needs to
be put in place.

We leverage variable redundancy for the task of detecting
non-control data attacks. For example, every time a vari-
able is written to memory a duplicate variable instance will
be written in the adjacent memory location. Two different
randomization keys are assigned to these respective variable
instances. During a variable load operation, the two vari-
ables will first be derandomized with their respective keys
and compared for equivalency. In the event that they are
equal, program execution can continue with variable access.
However, in the event of the redundant variables being dif-
ferent the program is flagged for invalid behavior, execution
is terminated without allowing variable access, and a backup
controller resumes execution through a recovery process. By
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utilizing this detection technique, it is not just enough for the
adversary to correctly guess one variable randomization key,
but must have knowledge of both keys to craft a successful
payload.

When looking at the likelihood of successfully circum-
venting this comparison approach within a 64-bit system,
the attacker would have a 1/264 likelihood of correctly repre-
senting their intended value in the default variable. However,
when introducing the second redundant variable, the attacker
would now have a 1/2128 likelihood of success. Since, after
attack detection, a fail safe controller will take over execu-
tion, the attacker only has one chance to be successful. As
such, it is extremely unlikely for an attacker to correctly ran-
domize both variables to pass the variable comparison check.
This approach ensures the integrity of our randomization pro-
cess in maintained and prevents the utilization of adversary
manipulated variables.

5 Implementation

The key components in our architecture are the (1) CPS con-
trollers which control the physical plant, (2) DBT which
uniquely customizes the runtime environment for each CPS
controller, and (3) points-to analysis graph (PAG) which
describes the relationship between load and store instruc-
tions and memory regions within a program.

CPScontrollerThis component is the actual software that
controls the CPS application. From the most generic form,
the controller takes sensor input from the system, performs
computation operations, and outputs actuation commands to
perform in the surrounding physical environment. Our archi-
tecture incorporates a generalist approach, allowing for a
broad array of control techniques and applications to be sup-
ported. The only requirement is that the control program be
in the form of native code.

Dynamic binary translator (DBT) This component is
responsible for providing a unique randomization backend
for each spawned CPS controller in the architecture. In other
words, the DBT is a virtual sandbox layer that serves as an
intermediary between the executing binary and the proces-
sor. The DBT has the ability to intercept instructions as they
are fetched and alter program semantics before execution by
the processor. As such, a DSR methodology is supported by
encoding variables before storage on the stack, as well as a
derandomization stage before loading into registers. Each
variable is supported to include a dynamically generated
unique randomization key, as well as a duplicate compari-
son variable for detecting variable tampering. Additionally,
the DBT is responsible for storing a variable key mapping
table which incorporates uniquely generated keys for every
variable in a program. We utilize an open-source dynamic

binary instrumentation tool Mambo for our implementation
[22].

Points-to analysis graph This component is responsible
for identifying the relationship between variables within a
program. For the implementation, the open-source tool SVF
is utilized which is built upon the LLVM compiler. For a
PAG to be successfully generated with SVF, it is necessary to
translate the program binary into a LLVM IR representation.
To accomplish this task, we utilize Mcsema integrated with
the Binary Ninja disassembler to perform binary lifting on
the original program. The results of the points-to analysis is
fed into the DBT as input to aid in establishing the dynamic
generation of variable randomization keys.

We make the assumption that the CPS controller compo-
nent in our architecture is vulnerable to cyber-attacks by the
adversary. The remaining components are not susceptible to
cyber-attacks. As such, the variable key storage table in each
DBT is assumed to be secure against integrity attacks in our
threat model. Our security architecture is designed with the
goal of keeping the CPS controller from becoming compro-
mised by the attacker.

5.1 Process flow

The basis behind the execution process of our security frame-
work is a three-step approach: (1) static analysis, (2) binary
load time, and (3) runtime. These steps are described below.

At design time, a significant amount of time needs to be
dedicated to properly establish the CPS controller. This con-
troller is located in secondary storage and is responsible for
the control of the CPS based on sensor input and actuator
output. Before loading the binary for execution, static analy-
sis is performed to analyze the relationship between program
variables with Mcsema and SVF [19,39]. At the conclusion
of this step, a bipartite graphs of the relationships between
load and store instructions and memory locations will be
extracted from the PAG. This data structure is then iterated
to identify any common instruction relationships between
memory locations and will then create a set of memory
address associations. For example, if two memory locations
have an instruction in common, those memory locations will
be combined into a set ofmemory addresses,whichwill share
randomization key information.

At load time, each set of memory locations from the static
analysis stage is stored in a mapping table within the DBT
with two associated dynamically generated randomization
keys. This lookup table will form the basis for our random-
ization approach during runtime. It is important to note that
the generated randomization keys are unique for each DBT
process. As such, there will be a different set of randomiza-
tion keys for each spawned controller process.

MTD forms the backbone of our security architecture,
incorporatingDSR to protect against non-control data attacks
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Fig. 8 Variable randomization process

as well as redundant controllers for reconfiguring during an
attack. The goal is to decrease the probability of a success-
ful cyber-attack by raising the level of effort needed by the
adversary for obtaining accurate reconnaissance knowledge.
Utilizing dynamic binary translators, which we implement
utilizing theMAMBODBT environment [22], local program
variables can be randomized at store time by XORing the
value with a dynamically generated key, as well as deran-
domized at variable load time by executing another XOR
operation with the key. Since in between variable store and
load time the variable will be in an encoded state, any effort
by the adversary to alter the variable will result in a deran-
domized value wildly different than the attackers intended
change. When looking at the randomization process by the
MAMBODBT enclosure, every time a variable store instruc-
tion is encountered two randomization keys will be retrieved
from an internal variable map. These two keys will be asso-
ciated with the original variable, as well as a redundant
comparison variable. When storing to memory, the origi-
nal variable will not only be stored in encoded form, but
a redundant version of that variable will be stored in an adja-
cent location with a different randomization key. When a
load instruction is encountered for the respective variable in
the program, a check is first performed to determine whether
the derandomized version of both the original and compari-
son variables is identical. Any change by the adversary will
result in a failure in this comparison, resulting in the ability to
detect the attack. Once an attack is detected, the the user has
many options including terminating the process or spawning
a backup process.

6 Evaluation

6.1 Experiment setup

To enhance the ability to evaluate cyber-attack impacts in
deployment environments, a hardware-in-the-loop testbed
was developed. Our testbed includes embedded hardware
representing CPS software infrastructure, a simulation work-
station representing the physical environment, and multiple
network interfaces representing communication channels
within the automobile environment. The setup of our testbed
includes four components: 2 beaglebone black microcon-
trollers [15] representing the sensor and actuator processes
in an automobile ECU cluster, a NVIDIA Jetson TX2 board
[31] providing for computational power necessary for design-
ing vehicle control algorithms, an i7 simulation desktop, and
a real-time web-based results dashboard. Furthermore, two
communication interfaces exist including 100-Mbps ether-
net and a 1-Mbps CAN bus. The hardware architecture is
illustrated in Fig. 9.

It is important to note that the decision to leverage the spe-
cific components (Ubuntu 18, NVIDIA Jetson, Beaglebone,
etc.) came down to preference. This testbed can be scaled to
several other setups with the following characteristics. First,
the simulation desktop needs to be able to have enough pro-
cessing and graphics power to run CARLA. At the moment,
CARLA is compatible with the Windows 7 and 10,and

123



606 B. Potteiger et al.

Fig. 9 Testbed hardware architecture

Ubuntu 16 and 18 distributions. However, as compatibility
with this simulator increases, so will the number of compati-
ble platforms. Second, the embeddedboards (NVIDIAJetson
TX2, Beaglebone Black) can also be replaced with any other
embedded computation board. With the absence of embed-
ded boards, controller and actuation code can be hosted on
the simulation desktop computer. In this case, a virtual CAN
interface can be leveraged for the actuation communication.

6.1.1 Software architecture

The software architecture of the testbed provides the capabil-
ity to implement real-time CPS control algorithms to interact
with and operate an autonomous car within a connected sim-
ulator.

Autonomous vehicle simulator The autonomous vehicle
simulator utilized in our testbed is the CARLA autonomous
vehicle simulator [21]. CARLA can be run on Windows and
Linux, but for our setup we have the simulator running on
Ubuntu 18.04. A socket-based communication is provided to
access variables in the simulation, but we built a customized
pythonAPI interface for easing variable access from external
processes in the other distributed hardware in our testbed.
The simulator can be customized to output sensor data such as
lidar, speed, images, distance to objects, orientation, andGPS
locations. Among the outputs, the user can change variables
such as steering, acceleration, and braking. CARLA is the
most sophisticated autonomous vehicle simulator to date and
allows for us to develop more realistic experiments.

CPS controller The software for the controller exists on
theNVIDIA Jetson TX2 board. This board is configuredwith
the Linux4Tegra 28.2 operating system, GPU libraries such
as CUDA, and machine learning libraries such has Tensor-
flow. The operating system is additionally patched with the

RT-PREEMPT patch. Furthermore, buffer overflow vulner-
abilities are inserted to test the effect of a non-control data
attack on the overall system behavior.

Communication To support automotive applications,
multiple communication interfaces are included such as
Ethernet and CAN bus. For Ethernet communication, the
ZeroMQ (ZMQ) communication library is utilized. Addi-
tionally, for the CAN bus communication, an open-source
library called SOCKETCAN is utilized to support the com-
munication between the control code and ECU cluster.

6.2 Case study

For evaluation purposes, an autonomous vehicle case study
is utilized to demonstrate the capabilities of our developed
security architecture. It is important to note that our security
architecture can be applied to any distributed CPS scenario
utilizing underlying software computation processes, not just
automotive scenarios.

The case study is based on a platoon scenario, with one
manual vehicle driving as the leader and an autonomous
vehicle representing the follower. For the purpose of eval-
uation, the follower vehicle will be the center of focus from
a security perspective. The automotive system is comprised
of electronic control units controlling braking and throttle
actuation, while receiving lidar, and speed sensor readings
as input. A neural network is utilized for the AEBS compo-
nent of the driving controller, controlling the braking of the
vehicle to avoid collisions with the leader. The AEBS neu-
ral network is a three-layer sequential model created using
the Tensorflow Lite library. During the case study, the leader
vehicle will brake at a stop light, thus requiring the follower
vehicle AEBS system to be activated. The goal of this case
study is for the AEBS controller to brake the follower vehicle
to avoid colliding in the back of the stopped leader vehicle.

6.3 Attack scenario

As illustrated in Fig. 1, the follower vehicle is comprised of
several components including a sensor and actuator ECU
cluster, driving controller, telematics control unit (TCU),
remote function actuator, and RFID sensor. There are two
external interfaces including cellular communications from
the TCU for remote monitoring services, and a RFID sync
with the vehicle key fob. The driving controller constantly
polls for the key fob signal to determine whether the engine
should remain on. When the key fob is within a close dis-
tance, the vehicle will be able to drive, but as soon as the key
fob is out-of-communication range the vehicle will turn off.
Under normal operation, there is not a communication chan-
nel for the TCU to transmit input to the driving controller.
However, since the TCU is connected remotely through a cel-
lular interface, this component is the most at risk for being
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compromised by the adversary. Even though the attacker can-
not compromise the driving controller directly through the
TCU, they can still utilize an intermediary step through the
remote function actuator to inject malicious input into the
driving controller. As such, the attack process consists of
the following steps: (1) compromise TCU through cellular
communications, (2) pivot to remote function actuator com-
ponent, (3) transmit malicious input to driving controller, (4)
overwrite distance values for AEBS controller. By utilizing
the above process, the adversary can cause the follower vehi-
cle to collide into the back of the leader vehicle, resulting in
significant damage to both vehicles.

6.4 Results

6.4.1 Static analysis performance

For the purpose of the case study, a three-layer sequential
neural network is utilized for the AEBS component of the
driving controller. From an implementation standpoint, there
are 1025 variables with a file size of approximately 220 kilo-
bytes. Additionally, there are three shared libraries that we
need to secure: Tensorflow Lite, libm, and ZeroMQ. This
provides a good baseline for measuring the scalability of the
different components in our static analysis pipeline.

The first stage in our DSR static analysis pipeline is binary
lifting. In order to explore the variable space of our target pro-
gram, it is necessary for the binary to be converted to LLVM
bitcode. Mcsema is an increasingly popular tool that accom-
plishes this task. In our implementation, Mcsema relies on
Binary Ninja for the disassembly and control flow graph gen-
eration, and a custom-developed python script to perform the
instruction translation process.As such, it is important to note
that the performance of the first step especially is variable
dependent on the external disassembly tool that is utilized.
For neural network program, it appears that the execution
time of the Mcsema custom section is pretty consistent aver-
aging approximately 17 milliseconds for 1000 executions.
This conveys that there is relatively good scalability, and the
execution times are satisfactory for our purposes since it is
only necessary to perform this step once before load time.

The second stage in our DSR static analysis approach is
points-to analysis. In our implementation, we use an open-
source implementation of the Andersen algorithm, which
provides polynomial time efficiency due to the context-
and flow-insensitive approach. To evaluate the scalability
of the points-to analysis implementation, we ran 100 iter-
ations of generating PAGs for neural network controller. It
was observed that the average execution time was approxi-
mately 250 milliseconds. Even with this increased overhead,
the execution times are reasonable and are only necessary
once during program runtime.

Fig. 10 Controller execution times

6.4.2 Experiment results

Due to the target sampling rate of 20Hz, it is paramount to
limit the overhead of our security architecture. As shown in
Fig. 10, the overhead created with DSR enabled is pretty sig-
nificant. Tomeasure the overhead, we analyzed the execution
times for 1000 iterations of our DSR approach with vary-
ing inputs. When looking at the AEBS controller execution
times, overhead is approximately 83%, bringing the aver-
age execution time from approximately 135 microseconds
for the baseline scenario to 247 microseconds with our DSR
implementation enabled. Additionally, this overhead brings
the worst-case execution time from 187 microseconds to
321 microseconds. Most of the overhead presented from our
approach arises fromaccessing the randomizationkey lookup
tables. To improve the overhead, we created a slight change
within the lookup table to utilize hashing. We use a simple
modulo approach with 100 slots to store randomization keys
based on the memory location address that the instruction
is accessing. With this approach, we were able to decrease
our overhead from 85% to 61%, a 27% reduction. The
average execution time with hashing is approximately 217
microseconds, while the worst-case execution time was 274
microseconds. Finally, to further improve the performance
overhead we implement caching for the variable encryption
keys. As such, instead of constantly accessing the lookup
table, at the first instruction instance, we store the encryp-
tion key adjacent to the load/store instruction in program
memory space.Therefore, every subsequent time this instruc-
tion is encountered will require only accessing the adjacent
encryption key with an added instruction instead of utilizing
program handlers to access the variable lookup table. For the
first 100 iterations, this approach produces a performance
overhead consistent with the hashing table approach, rang-
ing around 60%. However, after the 100 iteration mark when
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Fig. 11 Non-control data attack without DSR

a majority of the load and store instruction encryption keys
were cached, we were able to further decrease our overhead
to an average of approximately 34%, allowing for a more
reasonable amount of overhead for real time applications.

During the case of a non-control data attack, the adver-
sary is able to manipulate the AEBS controller operation by
altering the perceived distance to the leader vehicle. With
this adjustment, the new distance value is set at the max
value of 100 meters, causing the follower vehicle to maintain
acceleration. Furthermore, this continuance of acceleration
combined with the rapid approach toward the leader vehicle
will result in the crashing between the two vehicles as illus-
trated in Fig. 11. However, with DSR and variable integrity
checking enabled, the attempt by the attacker to overwrite
the distance variable will result in an incorrect variable com-
parison, consequently flagging the attack. At this point, a fail
safe controller will take over execution and fully brake the
vehicle. As a result, safety will be preserved and the follower
vehicle will avoid colliding with the stopped leader vehicle
as observed in Fig. 12.

7 Related work

In addition to code injection and code reuse attacks, non-
control data attacks have been demonstrated to be realistic
and devastating to the safety of CPS [13]. Data-oriented pro-
gramming is especially concerning, allowing attackers to find
aTuring complete approach tomount privilege escalation and
information leakage attacks [25]. Through a quick analysis
of 9 X86 programs, the authors were able to identify 7500
exploitable data gadgets [25]. Some basic defense techniques
have been implemented in the literature to address these types
of attacks including data watermarking [17], model-based
anomaly detection monitors [18], and pointer taintedness

Fig. 12 Non-control data attack with DSR

detection [12]. However, the DSR literature seems to be the
most promising with regard to preserving data integrity in
the event of non-control data attacks [6].

Implementations of DSR started with a software toolkit
called PointGuard [16]. PointGuard randomized the stored
pointer addresses to prevent attackers from gaining recon-
naissance knowledge about pointer data. In contrast, current
DSR implementations not only randomize pointer addresses
but encode the stored variable data [7]. The most popular
implementation of DSR is integrated within the multicom-
piler, a customized LLVM compiler developed within the
DARPA CFAR program [14] that can compile multiple
unique binaries from the same source code [24]. How-
ever, current implementations are developed for source code,
which poses a challenge when attempting to construct a
dynamic security framework on binaries. To the best of our
knowledge, our security framework is the first DSR imple-
mentation designed at the binary level. Some attacks against
DSR listed in the literature include data leakage attacks, brute
force and guessing attacks, and partial pointer overwrites
[6]. With strategic derandomization and high randomization
entropy, these types of attacks are deterred.

Redundancy has played a vital role for fault tolerance
in safety-critical applications. Traditional past examples
include airplanes [41], military protocols [8], and cloud
servers [5]. However, the most visible recent example of
redundancy is illustrated within the autonomous vehicle
domain where multiple controllers, sensors, and communi-
cation busses are utilized to ensure that if one component
fails, the behavior of the overall system is not compromised.
Even though redundancy has traditionally been utilized for
safety in high availability systems, the same fundamental
properties can be applied to application security. N-version
programming has long been used to mitigate compromised
controller effects [4], and multithreaded-based implementa-
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tions have demonstrated the ability to detect violations in
application consensus [40]. We leverage this previous work
by applying redundancy to the program local variables on the
stack, inserting variable comparison checking before usage
to ensure data integrity.

8 Conclusion

In this paper, we have shown howDSR can be integratedwith
variable integrity checking techniques in autonomous vehi-
cles for the purpose of ensuring secure and reliable operation.
Due to the tightly coupled nature between the cyber and phys-
ical components in CPS, it is not just acceptable to maintain
data integrity, but is necessary to guarantee a safe state of
operation. Furthermore, non-control data attacks are a viable
technique for altering physical behavior without the need for
manipulating program control flow. Instead of overwriting
the function return address on the stack, these attacks over-
write adjacent data variables to the input buffer with the goal
of utilization in safety-critical operations. DSR can protect
against non-control data attacks by changing the representa-
tion of variables, leaving adversary reconnaissance obsolete.
As such, any manipulation of data variables will be vastly
different compared to the intended goal. Furthermore, by
including a duplicate stored variable with a different ran-
domization key, a comparison can be performed at a variable
load time to detect the presence of variable tampering. Our
approach was tested with a hardware-in-the-loop testbed and
an autonomous vehicle case study with an AEBS controller
to illustrate CPS behavior on embedded hardware similar to
deployment environments. By performing experimentation,
we found that our framework produced positive security pro-
tection against non-control data attacks and limited physical
behavior effects, while introducing reasonable performance
overhead to the system. In the future, we plan to integrate
our DSR security approach with ISR and ASR to include
protections against code injection and code reuse attacks in
addition to non-control data attacks. Further, these techniques
are domain agnostic so can be applied to other domains such
as the Power Grid [38] and Healthcare [1].
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