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Abstract. As biomedical research advances there is an increasing need
to model and simulate more complicated systems to better understand
them. Since biochemical processes are inherently stochastic and often
contain both continuous and discrete behavior, stochastic hybrid systems
are an ideal modeling paradigm for capturing their dynamics. In this
paper we present a framework for modeling biochemical systems and
demonstrate the approach for the sugar cataract development process
including two methods of modeling drug treatment. Further, we present a
simulation method that uses second-order Taylor approximations for the
continuous dynamics and an improved method for detecting boundary
hits. We use the sugar cataract development process to demonstrate the
results of the method.

1 Introduction

As biomedical research advances into more complicated systems, there is an
increasing need to model and simulate these systems to better understand them.
Since biochemical processes are inherently stochastic and often contain both
continuous and discrete behavior, Stochastic Hybrid Systems (SHS) are an ideal
modeling paradigm for capturing their complex dynamics. Such systems are
often too large and complex for exhaustive verification techniques, so accurate,
efficient simulation techniques are very important.

Recently, a renewed interest in the field of biochemical system modeling has
increased the quality and diversity of the models created. Biological protein reg-
ulatory networks have been modeled with hybrid systems using linear differential
equations to describe the changes in protein concentrations and discrete switches
to activate or deactivate the continuous dynamics based on protein thresholds
[1]. Biomolecular network modeling using hybrid systems is accomplished by us-
ing differential equations to model feedback mechanisms and discrete switches to
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model changes in the underlying dynamics [2]. A modeling technique that uses
polynomial SHS to construct models for chemical reactions is presented in [3]. A
SHS model of a genetic regulatory network is compared to a deterministic model
in [4]. Switching thresholds for piecewise-affine models of genetic regulatory net-
works are studied in [5]. SHS models of biochemical systems using reaction rate
analysis have been developed and simulated in [6]. A biochemical system drug
model based on physical interactions at the molecular level has been developed
in [7].

Sugar Cataract Development (SCD) has been studied previously because it
is a biomedically significant process, and the dynamics of the system are com-
plex and difficult to test experimentally [8]. After a brief description of the SCD
model presented in [6] and establishment of realistic parameters for its simula-
tion, we present two new models of medication-controlled SCD. The first model
incorporates the medication and models the effect that the medication has on
the system. The second new model adds probabilistic delays to capture both the
absorption of the drug into the system and drug metabolism.

Simulation of SHS is challenging because it must combine numerical inte-
gration methods for Stochastic Differential Equations (SDEs) and methods for
detection of boundary crossings. Numerical integration of SDEs is accurate if the
trajectory is sufficiently far from any boundaries; however, when the trajectory
is close to a boundary, large errors can be incurred. A technique for accurately
detecting absorbing boundaries has been developed for one-dimensional systems
[9], and extensions have been proposed that scale to higher dimensional systems
[10]. The boundary crossing detection algorithm presented in [11] uses analysis
of moments to improve the accuracy of the approximation.

To improve upon previous SHS simulation techniques we present the Hybrid
Milstein Method (HMM) which utilizes a second order Taylor-based approxi-
mation for the stochastic continuous dynamics in conjunction with a technique
for accurately approximating the boundary hitting times. We validate the SCD
models by comparing simulation trajectories of the SHS and the stochastic sim-
ulation algorithm (SSA), which is considered to be an accurate but computa-
tionally inefficient approximation.

The organization for the rest of the paper is as follows: Section 2 describes
the biochemical modeling framework as well as three SCD models, Section 3
describes the SHS simulation technique, Section 4 presents our simulation results,
and Section 5 concludes the work.

2 Modeling Biochemical Reactions Using SHS

2.1 Dynamics of Biochemical Reactions

Discrete models are a natural modeling paradigm for biochemical systems be-
cause they can capture the changes of the concentrations of the involved re-
actants and products based on the stoichiometry defined by the biochemical
reaction. In a discrete model, when the reaction fires, the concentrations of the
reactants and products are reset to the appropriate updated values.
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To accurately model the reactions, the rate at which the individual reactions
fire must be calculated. The rate at which chemical reactions occur is calculated
using the stoichiometry defined by the type of reaction assuming temperature
and pressure are constant. For example, the reaction V + X → Y + Z, has a
reaction rate a = kvx where chemical species V , X , Y , and Z have concentrations
v, x, y, and z, and k is the reaction’s kinetic coefficient. The rates of other types
of reactions can be calculated similarly [3].

Chemical reactions are inherently probabilistic because of the unpredictabil-
ity of molecular motion [12]. Discrete stochastic models of reactions describe a
reaction as firing at a rate which is calculated using the chemical concentrations
and the kinetic coefficient. Slow reactions occur when reaction rates and con-
centrations are small enough and they can be modeled and simulated efficiently
using discrete stochastic techniques. However, discrete simulations become ineffi-
cient when there are large concentrations of molecules and/or fast reaction rates.
When discrete models become inefficient, reactions can be accurately modeled
as continuous stochastic models [6].

The rate of change of each chemical species in a fast reaction is calculated
using the chemical dynamics from the biochemical reactions. Suppose that we
have a system of M chemical reactions and N chemical species. We define xi

as the concentration of the ith chemical species in micro-Molarity (μM), Mfast

as the number of fast reactions, aj as the reaction rate of the jth reaction, w
as an Mfast-dimensional Wiener process, and the stoichiometric matrix v as a
(Mfast×N) matrix whose values represent the concentration of chemical species
lost or gained in each reaction. The dynamics for each of the i chemical species
are described by

dxi =
Mfast∑

j=1

vjiaj(x(t))dt +
Mfast∑

j=1

vji

√
aj(x(t))dwj . (1)

Biochemical systems can contain a mixture of both fast and slow reactions.
When fast and slow dynamics must both be considered it is most efficient to
use a combined, hybrid modeling approach to take advantage of the efficiency
of continuous modeling for the fast reactions while still keeping the accuracy
of discrete modeling for the slow reactions. Determining which reactions are
fast or slow is based on analysis of the rates using the kinetic coefficients and
chemical concentrations. To determine the slowest rate, the smallest possible
concentrations for each chemical species are used. Similarly, the fastest rate can
be determined by using the highest possible concentrations. Since the reaction
rates depend on the concentrations, reactions may be classified as either fast or
slow dynamically based on the system state.

2.2 Medication Modeling

Understanding how a biochemical system will operate under normal conditions is
important; however, in many systems, it is advantageous to understand how the
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system will act when it is perturbed by outside influences such as a medication.
The interaction of a drug with a biochemical system is important to model and
analyze because often the anticipated affect of the drug is altered by unforeseen
influences, and theoretical modeling and testing can help to demonstrate the
safety of a medication before it is tested on real subjects.

Drugs are administered to patients to improve their health by altering the
equilibrium of the reactions responsible for their symptoms. There are several
defining characteristics of drugs that are considered when modeling their behav-
ior. Drugs can generally be classified as either stimulants or inhibitors, which
respectively increase or decrease reaction rates. The efficacy of a drug is the
potential therapeutic response that it could produce. Drugs are metabolized by
the body at varying rates further complicating the system, so the decay of the
drug must be understood to accurately model its behavior.

The most direct drug modeling approach is to add the drug’s chemical species
and reactions to the original model. While this may appear to be a logical ap-
proach, it adds significant complexity to the system. A simpler technique is to
model the behavior of a drug as an inhibitor or stimulant and avoid increasing
the number of chemical reactions or chemical species considered.

Because stimulants and inhibitors alter the reaction rates of certain reactions,
modeling the effect of a drug on a given chemical reaction can be accomplished by
altering the kinetic coefficients. The amount of change of the kinetic coefficients
is determined by the efficacy and metabolism rate of the drug. For the SCD
model, discrete modes describe the system under different drug influences, and
discrete transitions model the application and metabolism of the drug.

2.3 Stochastic Hybrid Systems

We adopt the model presented in [13]. To establish the notation, we let Q be
a set of discrete states. For each q ∈ Q, we consider the Euclidean space R

d(q)

with dimension d(q) and we define an invariant as an open set Xq ⊆ R
d(q).

The hybrid state space is denoted as S =
⋃

q∈Q{q} × Xq. Let S̄ = S ∪ ∂S and
∂S =

⋃
q∈Q{q}×∂Xq denote the completion and the boundary of S respectively.

The Borel σ-field in S is denoted as B(S).
To define the execution of the system, we denote (Ω,F , P ) the underly-

ing probability space, and consider an R
p-valued Wiener process w(t) and a

sequence of stopping times {t0 = 0, t1, t2, . . .}. Let the state at time ti be
s(ti) = (q(ti), x(ti)) with x(ti) ∈ Xq(ti). While the continuous state stays in
Xq(ti), x(t) evolves according to the SDE

dx = b(q, x)dt + σ(q, x)dw (2)

where the discrete state q(t) = q(ti) remains constant. A sample path of the
stochastic process is denoted by xt(ω), t > ti, ω ∈ Ω.

The next stopping time ti+1 represents the time when the system transitions to
a new discrete state. The discrete transition occurs either because the continuous
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state x exits the invariant Xq(ti) of the discrete state q(ti) (guarded transition)
or based on an exponential distribution with nonnegative transition rate function
λ : S̄ → R+ (probabilistic transition). At time ti+1 the system will transition
to a new discrete state and the continuous state may jump according to the
transition measure R : S̄ × B(S̄) → [0, 1]. The evolution of the system is then
governed by the SDE (2) with q(t) = q(ti+1) until the next stopping time. If
ti+1 = ∞, the system continues to evolve according to (2) with q(t) = q(ti).

The following assumptions are imposed on the model. The functions b(q, x)
and σ(q, x) are bounded and Lipschitz continuous in x for every q, and thus the
SDE (2) has a unique solution for every q. The transition rate function λ is a
bounded and measurable function which is assumed to be integrable for every
xt(ω). For the transition measure, it is assumed that R(·, A) is measurable for
all A ∈ B(S) and R(s, ·) is a probability measure for all s ∈ S̄, and R((q, x), dz)
is a stochastic continuous kernel. Let Nt =

∑
i It≥ti denote the number of jumps

in the interval [0, t]. It is assumed that the expected number of jumps is finite for
every initial state s ∈ S, that is Es[Nt] < ∞. A sufficient condition for ensuring
finitely many jumps can be formulated by restricting R(s, A) [14,15].

2.4 Sugar Cataract Modeling

This section describes three SHS models of the biochemical process of SCD.
The first model describes the biochemical process of SCD. The two subsequent
models extend the first model to include the effect of medication on the system.
The first medicated model assumes that the effect of the drug on the system
is instantaneous, while the final model is designed to incorporate probabilistic
delay to model absorption and metabolization.

Sugar Cataract Development Model (SCD1). A sugar cataract distorts
the light passing through the lens of an eye by attracting water to the lens
when an excess of sorbitol is present. Often these cataracts are formed in the
eyes of diabetic patients who have highly fluctuating blood sugar levels. Several
factors affect the accumulation of sorbitol including the amount of the enzyme
SDH. SDH catalyzes the reversible oxidation of sorbitol and other polyalcohols
to the corresponding keto-sugars [8]. There are 8 chemical species involved in
the reaction: NADH(x1), E − NADH(x2), NAD+(x3), E − NAD+(x4), SDH
(x5), Fructose(x6), Sorbitol(x7), and the inactive form of SDH (Z).

A SHS model for SCD (SCD1) has been previously presented in [6,16]. The
ranges are bounded and are estimated using realistic concentration values derived
from experimental data and Michaelis-Menten constants (Km) defined as the
rate of the reaction at half-maximal velocity [8]. Table 1 describes the seven
reactions and rates involved in SCD. The rates are calculated based on the
concentrations and the kinetic coefficients presented in Table 1.

Each of the six fast reactions are modeled using the SDE (1). The inactive form
of SDH (Z) is not a reactant in any of the chemical equations, so its concentration
is not modeled. The equations describe the rates of change of the individual
chemical species and are
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Table 1. Sugar cataract reactions and kinetic coefficients

Reaction Kinetic coefficient Rate

SDH + NADH → E − NADH k1 = 6.2 31.1
E − NADH → SDH + NADH k2 = 33 151

E − NADH + F → E − NAD+ + S k3 = 0.0022 6
E − NAD+ + S → E − NADH + F k4 = 0.0079 19.5

E − NAD+ → SDH + NAD+ k5 = 227 998
SDH + NAD+ → E − NAD+ k6 = .61 3.2

SDH → Z k7 = 0.0019 0.002

dx=b(q,x)dt+
σ(q,x)dw

λ(q,x)=k7x5   /  x5-=d1;

Fig. 1. SHS model of SCD1

dx1 = (−k1x1x5 + k2x2)dt −
√

k1x1x5dw1 +
√

k2x2dw2

dx2 = (k1x1x5 − k2x2 − k3x2x6 + k4x4x7)dt +
√

k1x1x5dw1

−
√

k2x2dw2 −
√

k3x2x6dw3 +
√

k4x4x7dw4

dx3 = (k5x4 − k6x3x5)dt +
√

k5x4dw5 −
√

k6x3x5dw6

dx4 = (k3x2x6 − k4x4x7 − k5x4 + k6x3x5)dt +
√

k3x2x6dw3

−
√

k4x4x7dw4 −
√

k5x4dw5 +
√

k6x3x5dw6

dx5 = (−k1x1x5 + k2x2 + k5x4 − k6x3x5)dt −
√

k1x1x5dw1

+
√

k2x2dw2 +
√

k5x4dw5 −
√

k6x3x5dw6

dx6 = (−k3x2x6 + k4x4x7)dt −
√

k3x2x6dw3 +
√

k4x4x7dw4

dx7 = (k3x2x6 − k4x4x7)dt +
√

k3x2x6dw3 −
√

k4x4x7dw4

The single slow reaction SDH → Z describes the conversion of the enzyme
(SDH) into its inactive form at a rate of k7x5. When the reaction occurs, the
number of molecules of x5 is decreased by one and the concentration is decreased
by d1 = 10−21 μM. The SHS model can be seen in Figure 1. The reset on the
transition (x5− = d1) describes the effect of the single slow reaction on the
concentration of x5. For the SCD system, the classifications of the reactions do
not change dynamically because the kinetic coefficients are significantly different
and the chemical concentrations do not fluctuate widely.
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SCD Model with Medication Control (SCD2). Drugs can help patients
who are at high risk of developing sugar cataracts. These drugs work by inhibiting
the enzyme SDH thereby reducing the rate at which SDH reacts with other
molecules in the system. This initially results in less sorbitol production; however,
since the reversible reactions are tightly coupled, the results can have side effects
such as increasing the fructose levels.

We have created a new SHS model (SCD2), shown in Figure 2, of drug-
modulated SCD to include the effect that drug has on the system. The ap-
plication of the drug is represented as a new discrete mode that represents
drug-influenced dynamics where the reaction rates k1,k6, and k7 are reduced
by 50% to model the inhibition of the enzyme. Since the drug is metabolized
slowly and the amount that the rates are reduced is directly proportional to the
concentration of the drug, modeling a constant concentration is a reasonable
approximation.

dx=b(q1,x)dt+
σ(q1,x)dw

λ(q,x)=k7x5   /  x5-=d1;

x6≥d3 / x6+=d2;

x6≤d3 / x6-=d2;

dx=b(q2,x)dt+
σ(q2,x)dw

λ(q,x)=k7x5   /  x5-=d1;

Fig. 2. SHS model of medication-controlled SCD2

We have modeled the drug administration based on an elevated level of fruc-
tose. It is assumed that patients self-monitor and self-administer the medication.
When the amount of fructose in the blood rises above a threshold d3 = 250 μM,
we use a guarded transition to drive the system to a new state which introduces
the effect of the drug. When the fructose level drops back below d3, we use another
guarded transition to transition to the original state effectively removing the ef-
fect of the drug. We also include resets on the mode transitions to avoid infinitely
fast switching that arises due to the stochastic nature of the Wiener process. The
reset increases or decreases the fructose concentration by d2 = 1 μM.

SCD Model with Probabilistically-Delayed Medication Effect (SCD3).
The SCD2 model is effective for demonstrating the effect of medication on the
reactions; however, realistically the effect of the drug will not be immediate be-
cause of variable drug metabolism rates. Drugs are generally administered in
a form called a prodrug which allows the transport of the actual drug to the
appropriate cells. This prodrug is metabolized into an active form of the drug
at different rates for different people. Furthermore, once a patient discontin-
ues taking a drug, the body can metabolize the residual drug at variable rates
depending on many factors.
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q1

dx=b(q1,x)dt+
σ(q1,x)dw

λ(q,x)=k7x5   /  x5-=d1;

x6≥d3 / x6+=d2;

x6≤d3 / x6-=d2;

q3

dx=b(q3,x)dt+
σ(q3,x)dw

λ(q,x)=k7x5   /  x5-=d1;

q2

dx=b(q2,x)dt+
σ(q2,x)dw

λ(q,x)=k7x5   /  x5-=d1;

q4

dx=b(q4,x)dt+
σ(q4,x)dw

λ(q,x)=k7x5   /  x5-=d1;

λ(q,x)=d4

λ(q,x)=d5

Fig. 3. SHS model of medication-controlled SCD3 with delays

We have developed a model (SCD3), seen in Figure 3, which incorporates
two new states to model the delay of the conversion from prodrug to drug
(q2) and metabolism after dosage is discontinued (q4). We use guarded tran-
sitions to model exiting the medicated and non-medicated states and entering
the respective delay states. We then use probabilistic transitions to model the
exit from the delay states to model the stochastic nature of the conversion and
metabolism rates. The value d4 = 0.05 is the rate of an exponential distribu-
tion that models the delay incurred by the conversion of prodrug to drug, and
d5 = 0.05 is the value which models the exponential distribution corresponding
to the drug metabolism delay. These values were chosen so the average delay
is on the order of one hour which is reasonable for the SCD system, but the
values could be easily changed to model other types of medications. SHS can
also incorporate the continuous state into the transition rate if such a model is
necessary.

The continuous dynamics of the medicated (q3) and non-medicated (q1) states
are consistent with SCD2. The dynamics of the delay state q2 are the same as
those in state q1 to reflect the lack of change while the prodrug is being converted
into the drug. The dynamics in the delay state q4 model the metabolism of the
drug after the administration is removed, so the kinetic coefficients are adjusted
to reflect their half-life values. The coefficients can be adjusted to model various
drugs.
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3 SHS Simulation

3.1 Background

Simulating SHS is an important task because it can be used to understand and
validate models. However, it is challenging because the interplay between the
stochastic continuous and discrete dynamics can cause large errors if handled
incorrectly. Errors can be decreased by reducing the step size of the approxima-
tion, but this comes at the cost of efficiency. Therefore, care must be taken to
ensure that the simulation techniques used are accurate and efficient.

For numerical integration of SDEs, the order of convergence is used to quantify
the quality of the approximation. An approximation XΔt(T ) at time T with step
size Δt converges with order γ strongly to the actual trajectory x(T ) if there ex-
ists c > 0 such that E

(∣∣x(T ) − XΔt(T )
∣∣) ≤ cΔtγ . XΔt(T ) converges with order

γ weakly to x(T ) if there exists c > 0 such that E
(∣∣f(x(T )) − f(XΔt(T ))

∣∣) ≤
cΔtγ for a given class of measurable functions f [17]. Strong convergence implies
that the trajectory is a possible trajectory of the system, and weak convergence
implies that the computed trajectory only preserves the moments of the actual
trajectory.

Simulation of SDEs can be performed using Taylor-based approximation tech-
niques which have strong order of convergence of γ = 0.5 to γ = 3.0 and weak
order of convergence of γ = 1.0 to γ = 6.0 depending on the number of ap-
proximating terms [17]. The computation of higher order terms requires many
more operations and can be prohibitively expensive; therefore, a tradeoff must
be reached to achieve the appropriate accuracy and efficiency.

Numerical integration methods for SDEs assume that the solution is far away
from any boundaries; however, this assumption does not hold for SHS where the
effect of the switching boundaries must be taken into account. Large errors can
be incurred if the boundary conditions are not handled properly. Let us assume a
system has an invariant Xq with a boundary ∂Xq, and the state at time t is X(t).
As shown in Figure 4, if Δt is large, it is possible that X(t), X(t+Δt) ∈ Xq, but
∃τ ∈ [t, t + Δt] where x(τ) /∈ Xq. In this case, a discrete transition will occur in
the actual execution of the SHS but not in the approximating solution, and this
discrepancy may cause a significant error.

3.2 Simulation of SDEs

Simulation of SDEs can be performed using the Euler Maruyama (EM) method
which is a first-order Taylor scheme [17]. Assuming a d-dimensional drift coeffi-
cient b and a d×m diffusion coefficient σ, the kth component of the EM scheme
is given by

Xk
n+1 = Xk

n + bkΔt +
m∑

j=1

σk,jΔW j

for k = 1, 2, ..., d where ΔW j is the normally-distributed increment of the jth
component of the m-dimensional Wiener process W . The EM method is simple
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Fig. 4. A SHS trajectory close to a boundary

to implement, but achieves a strong convergence of γ = 0.5 and weak convergence
γ = 1.0, so small time steps must be used to generate accurate approximations.

The Milstein Method (MM) is a second-order Taylor scheme and has a strong
order of convergence γ = 1.0 while maintaining an acceptable efficiency. The kth
component of the MM scheme is described by

Xk
n+1 = Xk

n + bkΔt +
m∑

j=1

σk,jΔW j +
m∑

j1,j2=1

Lj1σk,j2I(j1,j2)

where

Lj =
d∑

k=1

σk,j d

dxk
and I(j1,j2) =

∫ τn+1

τn

∫ s1

τn

dwj1
s2

dwj2
s .

A method for approximating the multiple stochastic integrals is given in [17].

3.3 Switching Boundaries

Once the execution of the SHS hits a switching boundary, the current process is
stopped (absorbed) and re-started in a new state; therefore, switching boundaries
can be treated as absorbing boundaries. It is important to accurately estimate the
time and location that the process is absorbed to minimize the error introduced
into the approximation.

The naive technique to detect that a boundary was hit is to analyze the
trajectory at each time step to determine if it has crossed the boundary or
not. This method has a strong order of convergence of γ = 0.5 [11]. The tech-
nique developed in [18] determines whether or not the trajectory has hit an
absorbing boundary with weak order γ = 1.0 assuming that the boundary is
sufficiently smooth. We assume that the switching boundaries are hyperplanes
∂Xq =

{
x ∈ R

d(q) : n.(x − Xb) = 0
}

where n is the unit vector normal to the
boundary ∂Xq, Xb is the position of the boundary, and denote Xt, Xt+Δt the
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computed continuous state at time t and t + Δt respectively. If Xt+Δt hasn’t
crossed the boundary, but is close, the probability that the state trajectory has
hit the boundary between t and t + Δt is

P (hit) = exp

(−2(n.(Xt − Xb))(n.(Xt+Δt − Xb))
n.(σσ∗(Xt)n)Δt

)
.

For this approximation to be accurate, σσT (Xt) must be non-degenerate in the
direction normal to the boundary [18]. In between steps of the MM, the prob-
ability P (hit) is tested against a uniform random value U in [0, 1], and when
P (hit) < U , we assume that the absorbing boundary has been hit.

Firing of the probabilistic transitions (according to the transition rate λ)
occurs according the technique described in [15]. We draw a sample from a
uniform distribution and test the exponential decay at various times to determine
the jump time for each probabilistic transition. When the exponential decay is
greater than or equal to the random value, the transition is fired.

We combine the absorbing boundary version of the MM and probabilistic
firing technique to create the Hybrid Milstein Method (HMM) simulation tech-
nique for SHS. The resulting algorithm has a weak convergence of γ = 1.0. The
following algorithm describes a version of one step of the simulation method.

Algorithm 3.1: HighOrderSHSSimStep(Xk
t , SimLength)

Xk
t+Δt = Xk

t + bkΔt +
∑m

j=1 σk,jΔW j +
∑m

j1,j2=1 Lj1σk,j2I(j1,j2)

t + +

if U1 = rand(0, 1) < exp(−2(n.(Xk
t −Xb))(n.(Xk

t+Δt−Xb))

n.(σσ∗(Xt)n)Δt )
then FireGuardedT ransition

if U2 = rand(0, 1) < exp(−λ(t − T imeOfLastF ire))
then FireProbabilisticT ransition

4 Simulation Results

To better understand and validate our models, we present simulation results
using variants of the SSA, EM, and MM methods. The SSA simulates chemi-
cal reactions consuming reactants and creating products one reaction at a time.
Individual reactions in a system are assigned probabilities of occurrence, and
probability distributions are used to choose which reaction fires at each itera-
tion. Once a reaction fires, the quantities of reactants and products are updated
[19]. The SSA is very accurate, but it can be inefficient for large systems or
fast reactions because many iterations must be completed before results can be
observed. To efficiently handle practical systems, computational improvements
such as R-leaping have been devised for the SSA [20]. R-leaping increases the
number of reactants consumed and products produced in each step by a factor
of R. This increases the efficiency of the approximation, but will decrease the
accuracy. Since updates are made based on concentrations, the overall time step
can vary throughout the simulation.
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Fig. 5. Simulation results for SCD1 and SCD2
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Fig. 6. Simulation results for SCD3 and stepsize comparison

For simulation of SCD2 and SCD3, we have created a new algorithm, the
Hybrid Stochastic Simulation Algorithm (HSSA), which implements the SSA
using R-leaping and discrete transitions between modes. After each iteration of
the SSA, the guards for all valid transitions are tested, and a transition which
validates its guard conditions is fired if possible. Once the transition resets have
been executed, the SSA algorithm resumes in the new state.

The stochastic continuous dynamics of the SCD models can be simulated
using EM approximations [17]. To accurately model the discrete transitions of
the SCD models, we have developed a variant of the EM approximations called
the Hybrid EM (HEM ). In HEM, discrete transitions are incorporated into the
EM approximations by analyzing transition guards between steps of the contin-
uous dynamics simulation and executing the resets when a boundary crossing
is detected. Once the state is updated, the EM algorithm continues in the new
discrete state. We use the HMM as described in the previous section to provide
a more accurate simulation result.

Since the SSA algorithm is considered to be an accurate approximation of a
well-stirred chemical system [20], we compare the results of our HSSA, HEM,
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and HMM algorithms to demonstrate accuracy of the three SHS models and the
accuracy of the approximations in Figures 5 and 6. We also present a comparison
of the accuracy of the HMM for SCD3 at various resolutions in Figure 6. We
chose to display the concentration of fructose because it is directly correlated
with the development of cataracts, and it affects the administration of the med-
ication. The initial conditions of the system are: x1 = 5.0, x2 = 0.0, x3 = 5.0,
x4 = 0.0, x5 = 1.0, x6 = 253.0, and x7 = 0. The figures display the average
concentration at each time step for fructose for 100 runs of the three models.
These results show that the high order simulation technique results in a more
accurate simulation with a larger step size resulting in a faster simulation. The
100 HSSA simulations completed in 98 hours, the 100 HEM simulations took
approximately 6 hours (with step size Δt = 0.00001), and the HMM simulations
took approximately 3 hours (with step size Δt = 0.0005, and p = 101) on a
3GHz desktop computer.

5 Conclusions and Future Work

Accurate and efficient simulation of SHS is an important task because it is an
important tool which can expose the intricacies of the complicated dynamics
of highly-coupled systems. The interplay between the continuous and discrete
dynamics in SHS can introduce large errors into the simulations, so they must
be handled carefully. Our technique using high-order methods for simulating
SDEs combined with probabilistic boundary detection improves the accuracy
and efficiency of the simulator when compared with the naive approaches. This
work only addresses absorbing boundaries, so in the future we will also incorpo-
rate boundary conditions for reflecting boundaries that are required for practical
systems such as biochemical processes.
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