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1 Introduction

Modeling and analysis of biochemical systems are important tasks because they
can unlock insights into the complicated dynamics of systems which are difficult
or expensive to test experimentally. A variety of techniques have been used to
model biochemical systems, but the effectiveness of the analysis techniques is
often limited by tradeoffs imposed by the modeling paradigms. Stochastic differ-
ential equations have been used to model biochemical reactions [5, 2]; however,
analysis of these models has mainly been limited to simulation. Hybrid sys-
tems have also been used to model biochemical systems [4]; however, verification
methods based on deterministic hybrid systems fail to capture the probabilistic
nature of some biochemical processes and therefore may not be able to correctly
analyze certain systems. Stochastic Hybrid Systems (SHS) have been used to
capture the stochastic nature of biochemical systems but have previously only
been used for simulations [10] or analysis of systems with simplified continuous
dynamics [6].

In this paper we model Sugar Cataract Development (SCD) as a SHS, and
we present a probabilistic verification method for computing the probability of
sugar cataract formation for different chemical concentrations. An accumulation
of sorbitol in the eye is theorized to be the main factor in the SCD process. Un-
derstanding the exact conditions that lead to the development of sugar cataracts
will help scientists better predict and prevent the condition [2]. The chemical
reactions and kinetic constants for the system have been previously studied [8].

The stochastic dynamics for biochemical processes can be accurately mod-
eled by the chemical master equation which, however, is impossible to solve for
most practical systems [5]. The Stochastic Simulation Algorithm (SSA) is equiv-
alent to solving the master equation based on a discrete model by simulating
one reaction at a time, but if the number of molecules of any of the reactants
is large, the SSA is not efficient [10]. For verification, it is computationally in-
tractable to enumerate all possible states of the model employed by the SSA.
Our approach suggests starting with the continuous stochastic dynamics and
generating discrete approximations with coarser (and variable) resolution unlike
the fixed, overly-fine resolution of the SSA. The discrete approximations can
then be used for verification of reachability properties [7].



The proposed verification method employs dynamic programming based on
a discretization of the state space and suffers from the curse of dimensionality.
To verify the SCD process, we have developed a parallel dynamic programming
implementation of the verification algorithm that can handle large systems. Al-
though scalability is a limiting factor, this work demonstrates that the technique
is feasible for realistic biochemical systems.

2 Modeling SCD using SHS

A sugar cataract is a type of cataract which distorts the light passing through
the lens of an eye by attracting water to the lens when an excess of sorbitol
is present. The reactions involved in SCD are given in Table 1. The chemical
species and concentration ranges for the SCD process are described in Table 2.
The ranges are bounded and are estimated using realistic concentration values
derived from experimental data and Michaelis-Menten constants (Km) defined
as the rate of the reaction at half-maximal velocity [8].

Reaction Kinetic constant Rate

E + NADH → E − NADH k1 = 6.2 Fast
E − NADH → E + NADH k2 = 33 Fast

E − NADH + F → E − NAD+ + S k3 = 0.0022 Fast
E − NAD+ + S → E − NADH + F k4 = 0.0079 Fast

E − NAD+
→ E + NAD+ k5 = 227 Fast

E + NAD+
→ E − NAD+ k6 = .61 Fast

E → Z k7 = 0.0019 Slow

Table 1. SCD reactions and kinetic constants

Following [10] we classify the reaction rates as either fast or slow. The slow
reaction firing is described by a probabilistic rate function [10]. The dynamics
of the fast reactions are described by the equation

dxi =

Mfast
∑

j=1

vjiaj(x(t))dt +

Mfast
∑

j=1

vji

√

aj(x(t))dWj , i = 1, ..., 7 (1)

where xi is the concentration of the ith chemical species, Mfast as the number
of fast reactions, aj as the reaction propensity of the jth reaction, and W as an
Mfast-dimensional Wiener process. The stoichiometric matrix v is a (Mfast X
N) matrix which holds values representing the concentration of chemical species
lost or gained in each reaction.

To capture the discrete dynamics due to the slow chemical reaction, it is
sufficient to consider a hybrid system with one discrete state and with a self-
transition representing an occurrence of the slow reaction. As time progresses, the
state xi, i = 1, ..., 7 evolves according to (1). When the discrete transition occurs,
the concentration of E (x5) jumps instantaneously according to the assignment



Reactant Var. [Min, Max] (µM) Resolution (µM)

NADH x1 [0.0005, 10.0005] 1.0
E − NADH x2 [0.0005, 10.0005] 1.0

NAD+ x3 [0.0009, 10.0009] 1.0
E − NAD+ x4 [0.0009, 10.0009] 1.0

sorbitol dehydrogenase (E) x5 [0.0002, 1.0002] 0.1
fructose (F) x6 [0.2, 500.2] 20
sorbitol (S) x7 [0.2, 500.2] 20

Inactive form of E (Z) - [0.000002, 0.200002 -

Table 2. Chemical species properties for the SCD model

x5 := x5 − d where d is a constant representing the Molar volume which the
discrete transition consumes.

Biologists have determined that a ratio of sorbitol to fructose that is greater
than one is correlated to the beginning stages of sugar cataract formation [2].
Therefore, we define the set of safe states as the set of all concentrations that
satisfy x7 − x6 < 1, and we can then perform safety analysis on the system to
determine the probability that a patient will develop a sugar cataract from any
starting state.

3 Probabilistic Verification of SCD

In this section, we analyze the safety probability for the SCD model using the
technique presented in [7]. The resolution parameters for the SCD system result
in a discrete Markov Chain (MC) with approximately 800 million states. Storing
the values at each state alone requires several gigabytes of memory, so we de-
veloped a parallel value iteration implementation to improve the performance of
the algorithm. Assuming that the value at each state is updated periodically, the
value iteration algorithm is guaranteed to converge in a parallel implementation
[3]. The MC has a regular structure which improves the efficiency of the value it-
eration algorithm and allows us to implement a fairly straitforward partitioning
technique for parallel implementation [9].

To visualize our results we plot projections of the data which show the safety
probability for fixed values of the first five variables and the entire range for
sorbitol and fructose. Figure 1 shows a projection of the value function along the
safety boundary where x1 = 1.0, x2 = 1.0, x3 = 1.0, x4 = 1.0, x5 = 0.1. This data
could possibly be used to help better predict sugar cataracts by demonstrating
where the safest and most unsafe concentrations exist. It could also give guidance
for choosing the most effective of economical treatment to avoid the cataract
development.

The SCD experiment took approximately 10 hours using 32 processors of the
ACCRE computing cluster [1]. Currently, the bottlenecks of this approach are
memory size and speed.



Fig. 1. Projection of the value function
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