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ABSTRACT 

The ability to characterize sensing quality is central to the design 
and deployment of practical distributed sensor networks. This pa- 
per introduces the concept of a sensing field defining, for each 
point in the physical space of a phenomenon of interest, a mea- 
sure of how well a sensor network can sense the phenomenon at 
that point. Using target localization and tracking as examples, the 
paper derives an upper bound for this measure of goodness mea- 
sure, using the Cramer-Rao bound and models of sensor observa- 
tion and network layout. It then evaluates the validity of statistical 
observation models used by a family of estimators. Simulation 
results of applying the analytical analysis to a randomly spaced 
network are presented. 

1. INTRODUCTION 

Sensor networks are emerging as a field with potential impact on 
many applications such as intelligent infrastructure, environmen- 
tal monitoring, and battlefield monitoring. A distributed sensor 
network can be flexibly deployed in an area where there is no a 
priori sensing infrastructure. In contrast to traditional centralized 
sensor array processing where a central processing unit processes 
the measurements collected from all sensors and make decisions, 
sensor networks distribute the computation among sensor units. 
Such distributed processing enjoys better flexibility. scalabilitv. 
and survivability. 

The ability to cover a large area is important for tracking events 
of a significant spatial extent, as in tracking a large number of 
events simultaneously, or for tracking dynamic events traversing 
the sensing ranges of many individual sensors, as in tracking a 
moving vehicle. The characterization of a sensor network’s abil- 
ity to perform a sensing task is a fundamental problems in the 
deployment and use of such systems. Note that traditional sen- 
sors are characterized by specifications such as range, resolution, 
and accuracy. These specifications are used to decide if a sensor 
is suitable for the task and system at hand. The simplicity and 
elegance of these specifications makes the use of individual sen- 
sors a very easy task. Similar specifications for sensor networks 
currently do not exist and extensive testing is necessary. 

This paper introduces the notion of sensing peld for charac- 
terizing the pointwise ability of a sensor network to measure a 
physical phenomenon of interest. The domain a sensing field is 
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the physical space where the phenomenon is to be estimated. For 
each point in that space, a measure is defined to characterize how 
well the sensor network can sense the phenomenon at that point. 
We will present a statistical derivation of the sensing field given a 
sensor layout and observation models. The sensing field can be 
computed at design time, or evaluated at run-time using a dis- 
tributed algorithm and even updated dynamically, for example, 
when nodes move. 

Consider vehicle tracking as an example for sensor network 
applications. The designer of the sensor network would like to 
deploy sensors at specific locations so as to maximize the prob- 
ability of detection if there is a vehicle in the sensor field, and 
obtain good estimation accuracy of the vehicle position. For an 
already deployed sensor network, it is often important to charac- 
terize well-covered areas, weakly-covered regions, or blind spots 
in order to adjust algorithms and cope with resource constraints. 
On the other hand, from the perspective of an adversary, the no- 
tion of well- or weakly- covered regions are also important, for 
example, in planning minimal-exposure “stealthy” routes. 

Though coverage Characterization of sensing systems is of 
great significance, existing work in sensor network literature is 
very limited. The approaches in [ l ,  21 tackle the coverage prah- 
lems using distance from the sensor nodes to characterize the sens- 
ing ability. While there is often a correlation between distance and 
sensing ability due to physical signal attenuation, using distance as 
the only metric is crude and inherently limiting. These approaches 
do not take into consideration any sensor characteristics and there- 
fore, results in the same coverage characterization independent of 
the type and capabilities of the individual sensors. 

2. SENSING FIELDS IN TARGET LOCALIZATION 

Target localization is a canonical application for array signal pro- 
cessing, extensively discussed since the sixties. In the recent decade, 
due to the benefit of their easy deployment and scalability, sensor 
networks have become increasingly important for target localiza- 
tion. Elaborate systems have been developed see [3,4] for exam- 
ple descriptions. In this section we use target localization as the 
context to illustrate the approach of sensor coverage characteriza- 
tion. 

In target localization problems, we assume that the target is 
present in a location domain, for example, a 2-D terrain. The goal 
of localization is to locate the target in the domain to some accu- 
racy based on the observed data. To illustrate the basic idea, we 
consider the simple sensing model as follows: 

Acoustic amplitude sensors. They calculate sound ampli- 
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Fig. 1. Observational model: a) p(amp(x)  for acoustic amplitude 
sensors, and b) p(8lz )  for DOA sensors. 

tude measured at each microphone, and estimate the dis- 
tance of the vehicle based on the physics of sound attenua- 
tion. Assuming that the sound source is apoint source, and 
sound propagation is lossless and isotropic, a root-mean- 
squared (rms) amplitude measurement amp is related to 
the sound source position z as 

where A is therms amplitude of the sound source, 6 is the 
location of the sensor, T(X, 6) measures the Euclidean dis- 
tance between the sound source and the sensor, and w is 
rms measurement noise [ 5 ] .  For simplicity, we model w as 
zero mean Gaussian. The observational likelihood function 
p(amp1x) is plotted in Fig. la. Given the amplitude mea- 
surement, the sensor can infer the target location as a ring 
around itself with some uncertainty. 
The direction-of-amval (DOA) Sensors are small micro- 
phone arrays. Using beamforming techniques, they deter- 
mine the direction where the sound comes from, i.e., the 
bearing of the vehicle. We use the maximum likelihood 
(ML) DOA estimation algorithm proposed by Chen er al. 
[6] .  Due to the presence of noise, the DOA estimate of 
angles is often an approximation, i.e, 

8 = a tan(xh  -<hi xu - t) + n, ( 2 )  

where the subscripts h and v denote the horizontal and 
vertical coordinates respectively, and n is the perturbation 
noise. Repeated tests have shown that n can be well-modeled 
by a zero mean Gaussian [4]. For this type of sensor, the 
observation likelihood functionp(8lx) is shaped like acone, 
as plotted in Fig. Ib. 

It is clear that the two types of sensors have quite different charac- 
teristics, and under both sensing models, the likelihood function is 
non-Gaussian in the Cartesian space, as shown in Fig. 1. Target lo- 
calization algorithms need to incorporate the sensor measurement 
through proper data fusion mechanisms, and the sensing ability of 
such a heterogeneous sensor network depends on the estimation 
algorithm itself, the sensor layout, and the specifics of individual 
sensors. 

3. MEASURE OF ESTIMATION ACCURACY 

In target localization context, sensing field characterizes the sen- 
sor networks ability to localize target in a physical location do- 

main. In this section, we compute an instantiation of sensing field 
based on the accuracy of estimation, which is a major focus of 
performance. In practice, the estimation accuracy can be obtained 
by exlensive testing. Estimation bounds are of interest because 
they can be obtained analytically, and are often insightful approx- 
imations of reality. In this section, we explore the Cramer-Rao 
bound (CRB) of estimation accuracy (or equivalently the Fisher 
information) in sensor networks. 

Given the observation model ~ ( z l x ) ,  one can estimate the un- 
derlying parameter 2: from the observation z. The Fisher informa- 
tion matrix 

measures how informative the measurement L is about x. The 
variance of any unbiased estimator is lower-bounded by the in- 
verse of diagonal elements of Fisher information matrix, i.e., 

cov(e(z)) 2 I-'. (4) 

The notation of A 3 B means that the matrix A - B is positive 
semi-definite. The right hand side of (4) is known as the CRB. In 
this sense, CRB characterizes the best achievable performance in 
the family of unbiased estimators, and is asymptotically tight [71. 

We use the sewing model described in Sec. 2 as an example. 
Here we present the main results without detailed derivations. Let 
dk = ( d k . h ,  dk ," )  be the displacement vector (in the two-D loca- 
tion domain) from the target to the k-th sensor, i.e., d k  = x - C k  

We have the following results: . The Fisher information of estimating the target location 
based on an amplitude sensor is 

where o k , o m p  is the standard deviation of noise in sensor 
IC's amplitude measurement. 

The Fisher information of estimating the target location 
based on a DOA sensor is 

where UkJO.4  is the standard deviation of noise in the sen- 
sor's direction measurement. 

Assume that given the target location x, the measurement 
across different sensors are statistically independent, Le, 
p ( z ~ , . . . , z r l z )  = n ;=,, ..., k p ( z , l x ) .  The Fisher infor- 
mation of estimating the target location based on the simul- 
ianeous measurements of a collection of sensors is the sum 
of the CRB of individual sensors, i.e., 

(7)  

This corresponds to the limit of an unbiased centralized lo- 
calization system. 
Fig. 2a shows a randomly deployed sensor network, in which 
the sensor locations are generated by perturbing a uniform 
3x4gridovera20x20meter2 fieldby Gaussian noise. For 
this sensor layout, Fig. 2b plots the determinant of Fisher 
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(a) (b) (C) 

Fig. 2. The Fisher information: (a) the sensor network layout. The points marked with "+" denote amplitude sensors, assuming A = 
40 and the Gaussian amplitude noise of standard deviation qamp = 0.5. The points marked with squares denote DOA sensors, 
assuming that the noise to angle measurements have U ~ , D O A  = 3". (h) The determinant of the centralized Fisher information 
(IIt,t,,l) as in (7). (c) The determinant of the distributed Fisher information as in (8). Subfigures (b) and (c) are plotted in log 
scale. 

information matrix. High value implies good estimation 
accuracy. It reaches local maxima at sensor locations. This 
is expected, since the SNR is high if the target is close by. 
Note that amplitude and DOA sensors have a different im- 
pact on Fisher information, since their sensing characteris- 
tics are distinct. In this configuration of model parameters. 
DOA sensors produces lower peak values for Fisher infor- 
mation. 

e The Fisher information of estimating target location with 
some prior knowledge is the Fisher information without 
prior knowledge plus the Fisher information for the prior 
knowledge itself. This i s  a well-known result in estimation 
theory [71. 

In sensor networks, the constraints on computation and cam- 
munication prohibit the use of all sensor measurements simultane- 
ously, especially when the underlying state is time-varying, e.g., 
the target is moving. Sensor network systems often implement es- 
timation in a recursive way. At time t ,  only a small number (one 
or several) of simultaneous sensor measurements are incorporated 
to estimate the target location. The estimated location x( t ) .  com- 
bined with target dynamics, becomes the prior knowledge for the 
next time step t + 1. The Kalman filter is a well-known instance 
of this type of recursive algorithm 181. 

The Fisher information and CRB for recursive estimation al- 
gorithms can also be computed recursively, as described in [9] .  
We assume the vehicle dynamics take the form xttl = xi + st. 
For simplicity, we assume that the displacement st is a stationary 
independent Gaussian random process with zero mean and covari- 
ance R,. Under these conditions, we have 

The result is actually intuitive. The first term, Ip(At+,lzt+,), is the 
new information brought in by the new measurement ztt-1. The 

know at time t can help estimation at t + 1. Hence the effect of 
I t  will be greatly discounted when computing It+,. On the other 
hand, if the target dynamics are deterministic and known, then 
Rs = 0, and (8) is simply It+l = Ip(zt+,+t+,, + I t ,  meaning 
that the Fisher information from different sensors can he added 
directly. In  this special case, the target is equivalent to a stationary 
one, hence delay between readings does not matter. and we get the 
same result as in the centralized case. 

For the sensor network plotted in Fig. 2a, we compute the 
Fisher information (8) for a distributed estimation scheme which 
uses measurements from four sensors nearest to the target loca- 
tion. The measurement of the nearest sensor is applied at time 
t = 0, the measurement of the second nearest sensor is applied at 
time t = 1, and so on. Fig. 2c plots the determinant of Fisher 
information (8). Compared to Fig. 2b, the Fisher information 
for the distributed system is lower, since the distributed system 
trades off optimality with computational and communication effi- 
ciency. Nevertheless it better describes the actual performance of 
distributed sensor networks. 

The recursive computation of Fisher information is not limited 
to the Gaussian assumption of the displacement st. With some 
modification, the above analysis still applies. In particular, if the 
displacement st is independent of xt. (8) holds with R, substi- 
tuted by the Fisher information of the vehicle dynamics model 
P(Zt t11Xt ) .  

4. VALIDITY OF STATISTICAL MODELS 

Sec. 3 explores the theoretical estimation accuracy bound, which 
is independent of the specifics of any particular estimation algo- 
rithm. On the other hand, the actual estimation performance de- 
pends to a large extent an the estimation scheme itself. In partic- 
ular, statistical estimation algorithms often use parametric mod- 
els to approximate the actual sensine phvsics. For example, the 



5. DISCUSSION 

We have presented two examples of the sensing field in the tar- 
get localization context. The estimation accuracy characterizes 
the theoretically achievable performance of sensor networks. The 
model validity reflects our "confidence" of achieving the theoret- 
ical bound. Such information could be very useful to sensor net- 
work users. In particular, it can be used as a mechanism for evalu- 
ating the sensor network, and provides reference to sensor deploy- 
ment and estimation and routing algorithms. For example, for a 
randomly deployed sensor network, once the sensor locations are 
calibrated, the user can have a good sense of strength and weak- 
ness of the sensor network's sensing capabilities. Algorithms can 
be adapted accordingly. For example, the system's awareness of 
the fact that the target is approaching a sensor hole is valuable. It 
can trigger algorithms to query sensors further away, call for more 
extensive sensor collaboration, and planning for limited resources 
with sufficient look-ahead. Another example is in mobile sensor 
network, where one may pose the problem of adjusting sensor lay- 
out as a high-dimensional optimization problem in an average or 
minimax sense. Given the layout of local neighborhood, individ- 
ual sensors can be adjusted to provide even coverage across the 
field, or to focus coverage on specific regions of interest to satisfy 
user requirements. 

Although the framework presented here is illustrated in the 
context of target localization, the basic idea of characterizing a 
sensor network's ability is not limited to that problem. For ex- 
ample, in tbe target detection problem, where only the detection 
performance (detection probability and/or false alarm probability) 
is of interest, one can explore the possibility of using a Chemoff 
bound to characterize performance. The techniques to compute 
model validity are rather general and can be easily adapted to dif- 
ferent sensing models and different phenomena of interest. 
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Fig. 3. Knllback-Leibler divereence as a function of distance r 
I 

between the target and the sensor. 

To quantify the model validity, we use the distance between 
the assumed model q(z1x) and the actual model p ( z ) x ) .  measured 
by information-theoretic Kullback-Leibler divergence: 

It measures the number of bits to describe the discrepancy be- 
tween p and q [lo]. This metric reflects how well q fits p .  A 
good fit would justify the use of a tracking algorithm built on the 
assumption q. A bad fit would suggest otherwise. 

In conjunction with estimation accuracy, we consider a differ- 
ent instantiation of sensing field based on model validity, measur- 
ing the goodness of the fit of the assumed statistical model. For 
a single sensor, the field is computed as the discrepancy between 
the actual observational probabilityp(z1x) and its assumed model 
q(+) as a function of x, and calculate the value for each x. 

For example, consider a Kalman filter in a homogeneous sen- 
sor network consisting of sensors which have an amplitude mea- 
surement (hence ranger) and a direction measurement 8. Let z be 
the sensor measurement about target location, i.e., z = ( zh ,  z.) = 
C + ( rcos  8, r s in8) .  The likelihood p(rlx) is simply the prod- 
uct of the two likelihoods in Fig. 1, multiplied by the Jacobian of 
T with respect to coordinate transformation. The likelihood is a 
comet shape around x, and Kalman filter approximates it with a 
Gaussian fit. For the sensing model described here, the validity 
measured as the Kullhack-Leibler divergence is only dependent 
on the distance 6 between the sensor and the target. The com- 
puted model validity is thus radially symmetric. Fig. 3 plots its 
value along a radius. For small r, since the target is very close 
by, the signal-to-noise ratio (SNR) is high, therefore p(z1x) is a 
very thin arc which cannot he well approximated by a Gaussian 
fit. For very larger, the tail of the comet becomes longer, which 
makes the Gaussian fit not very accurate. Similar techniques can 
be applied to calculate model validity for more complicated sens- 
ing models. 

The model validity characterization for single Sensors can gen- 
eralized to sensor networks consisting of multiple sensors. The 
Kullback-Leibler divergence of each sensor can be superimposed. 
This corresponds to the goodness of fit of the joint observational 
model p(z1 , .  . . , z*Ix) assuming conditional independence. The 
regions with low divergence values are considered as well-modeled 
and closer-to-theory performance is expected 
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