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Abstract: Autonomous Cyber-Physical Systems (CPS) must be robust against potential failure modes,
including physical degradations and software issues, and are required to self-manage contingency
actions for these failures. Physical degradations often have a significant impact on the vehicle dy-
namics causing irregular behavior that can jeopardize system safety and mission objectives. The
paper presents a novel Behavior Tree-based autonomy architecture that includes a Fault Detection
and Isolation Learning-Enabled Component (FDI LEC) with an Assurance Monitor (AM) designed
based on Inductive Conformal Prediction (ICP) techniques. The architecture implements real-time
contingency-management functions using fault detection, isolation and reconfiguration subsystems.
To improve scalability and reduce the false-positive rate of the FDI LEC, the decision-making logic
provides adjustable thresholds for the desired fault coverage and acceptable risk. The paper presents
the system architecture with the integrated FDI LEC, as well as the data collection and training ap-
proach for the LEC and the AM. Lastly, we demonstrate the effectiveness of the proposed architecture
using a simulated autonomous underwater vehicle (AUV) based on the BlueROV2 platform.

Keywords: assured autonomy; behavior trees; learning-enabled component; assurance monitor; fault
detection and isolation; BlueROV; ROS

1. Introduction

In recent years, with the rapid development of GPU-accelerated embedded computers,
there is a steadily growing number of Learning-Enabled Cyber-Physical Systems [1] among
autonomous vehicles in the air, ground, sea, and undersea domains. ‘Learning-Enabled’
means that certain functions are implemented using machine-learning techniques—usually
deep learning—resulting in models that implement these ‘Learning-Enabled Components’
(LECs) [2]. The machine-learning methods used in the design of LECs rely on training
data collected via system operations or simulation. For training and evaluation, multiple
simulation runs are necessary so that the training data sufficiently covers the spectrum
of operational situations that the autonomous vehicle will encounter. Such autonomous
vehicles are often operated in hazardous environments with a high degree of uncertainty,
where the safety of the vehicle and mission success depend highly on the performance of
the LECs onboard. ‘Assured Autonomy’ is a paradigm for improving the performance
of LECs, where safeguards are integrated into the system’s design to provide guarantees
(‘assurances’) for safe and robust behavior, even when a component (possibly an LEC
trained with incomplete data) does not work correctly.

Faults and degradations, e.g., sensor failures, software malfunctions, actuators degra-
dations, etc., can happen anytime and anywhere in a system. This paper focuses on faults
and degradations in the actuators that can considerably affect the system behavior. We
propose a system architecture where a subsystem—the autonomy manager—monitors
the vehicle hardware’s and software for anomalies and takes corrective actions as needed.
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The autonomy manager includes an LEC for fault detection and isolation (FDI). The man-
ager also includes an additional component called the ’assurance monitor’ that supervises
the LEC and determines the confidence that the generated output is correct. The results of
these two components are combined into a single decision for initiating a change in the
controllers that would mitigate the actuator fault.

We have implemented this system architecture using Gazebo-based simulation and
Robot Operating System (ROS) with Python nodes. The autonomy manager is using a
Python-based Behavior Tree (BT), and the autonomous underwater vehicle (AUV) is based
on the 6 thruster-driven BlueROV2 platform. Details of the implementation can be found
in Section 4.

The contributions of this paper are:

• The novel system architecture that ensures that the mission execution is robust to
faults and anomalies,

• The use of an assurance monitor that complements the FDI LEC predictions with
credibility and confidence metrics,

• The design of an assurance evaluator that decides whether a particular classification
can be trusted or not; this decision-making process is based on requirements related
to the acceptable risk of each decision as well as the desired frequency of accepted
classifications.

• The evaluation of the fault-adaptive system using an AUV example in ROS/Gazebo-
based simulations with more than 400 executions for various hazardous/
faulty environments.

The paper is organized as follows. In Section 2 we provide a brief overview of FDI
for autonomous vehicles, how behavior trees (BT) are used as higher-level autonomy
controllers, and how LECs can be used in autonomous systems. In Section 3 we present
our high-level architecture for an autonomous vehicle based on the BlueROV2 system,
with fault-adaptive autonomy in focus, as well as the metrics for evaluation. Section 4
presents details of: (1) the chosen autonomous vehicle (AV), including implementation de-
tails focusing on the autonomy manager and BT-based mission execution, and (2) the LEC,
augmented with assurance monitoring technology. Finally, in Sections 5 and 6 the paper
concludes by summarizing the results and makes recommendations for further research.

2. Background
2.1. Autonomous Vehicles

Fault detection, isolation (FDI) is widely used technology [3] in many disciplines,
including aerospace engineering and automotive systems. In such systems, there is a
high degree of redundancy to achieve robust fault detection and appropriate control
reconfiguration. Drive-by-wire and fly-by-wire systems are examples for proven solutions.
In general, there is an open loop plant with actuator(s), plant dynamics and sensor(s)
to model the system and the fault. These systems usually include redundant actuators
and sensors to achieve robust operation. Faults can occur within an actuator, sensor or
component (software or hardware such as Extended Kalman Filter or power module) fault,
and the system must detect and react to these accordingly. FDI algorithms can be designed
to be robust to disturbances and noise and can be grouped to a few basic approaches, all
of which are based on residual generation which is sensitive to faults but robust to noise.
With the fault isolation comes the decision-making based on statistical tests of residuals.
Reconfiguration is a common contingency action in response to a fault and usually involves
some sort of controller change in the system to maintain satisfactory operation.

Existing work on FDI is very broad and there are techniques which have been applied
to autonomous systems. An FDI method in Electric Ship Power Systems (SPS) for the next-
generation US Navy fleets is presented in [4]. As a highly critical system, an SPS operates
with overlapping fault-tolerance, reliability, security to maintain survivability. This is not
only important in military systems but also for unmanned autonomous vehicles such as
Unmanned Aerial Vehicles (UAVs) and Unmanned Underwater Vehicles (UUVs). An FDI
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method to guarantee system safety and reliability for UAVs with sensor faults using state
and input estimation is presented in [5]. A robust and efficient fault diagnosis system for
quadrotor UAV actuator failures based on quasi linear parameter varying (qLPV) systems
is presented in [6]. A robust H∞ observer is designed to detect partial and total degradation
for actuators and tested with numerical experiments in MATLAB/Simulink. FDI with
fault-tolerant control for the DJI F550 hexacopter platform and open source Pixhawk2
flight controller with APM Copter v.3.5 and custom C++ user implementation code is
used in [7]. In [8], the authors present a fault-tolerant control for open-frame ROVs using
control reallocation and power isolation. The presented vehicle has 8 or 12 thrusters, so
the hardware layer redundancy for control is much higher than the standard BlueROVs.
Multiple and different partial and total degradations were presented such as jammed,
broken or lost propellers. For control reallocation, they use a fixed fault code table with
thruster saturation bounds and thruster power on/off switch. A grey prediction rank
particle filter (GP-RPF) fault diagnosis method for a thrust loss detection and control
reallocation problem on a four-thruster drive AUV is presented in [9]. The thruster layout
is different than the BlueROV2 thrusters, but the main idea is to detect the faulty thruster
and reallocate thrust to balance thrust and torque loss, similar to our work. In our work,
we use an LEC to obtain the degradation information, without using the AUV position and
status plus the predicted status information.

2.2. LECs in Autonomous Vehicles

A central problem with LECs in an autonomous system is that the performance is
dependent on the training data. When the neural network receives out of distribution
data that differs significantly from the distribution of the training data, the precision and
recall drops dramatically [10]. As autonomous vehicles become increasingly complex,
it is hard to fully test and validate such systems offline. A method for verifying the
safety of autonomous systems with LEC controllers with sigmoid/tanh activations is
introduced in [11]. Assured runtime monitoring and planning to provide safe operation in
an environment with unsafe levels of disturbance and noise is presented in [12]. A novel
assume-guarantee-based verification approach for automotive and autonomous LECs is
presented in [13]. The input for such neural network-based automotive systems are based
on cameras along with LiDAR sensors. A trained LEC controller processes the inputs and
creates control outputs for obstacle avoidance while using reachability analysis to compute
the set of safe states [14]. In [15], a controller verification scheme for detecting unstable
learning behaviors is presented for online neural networks. The situation is similar in
the case of small Unmanned Aircraft Systems (UAS) with large numbers of such vehicles
entering the airspace. These vehicles use LECs for sensing, guidance and navigation. Thus,
formal verification and assurance can improve safety and ease the integration of these
vehicles into the national airspace [16].

Typically, CPSs are used in applications where wide range of autonomy is required,
for example, in unsafe operation conditions or uncertain and hazardous environments.
To develop the software required for such systems, we are using the Assurance-based
Learning-enabled Cyber-physical systems (ALC) Toolchain [17], developed at Vander-
bilt University. This toolchain supports full development cycle for CPS design with
LECs [18] including architectural modeling, data collection, LEC construction, verification
and system-level assurance.

2.3. Behavior Trees for Autonomy

Behavior Trees (BT-s) were originally created for providing ’artificial intelligence’, i.e.,
autonomous and/or reactive behaviors in computer games. However, in recent years BT-s
appeared in high-level mission management logic in autonomous systems [19]. BT-s can be
used to create high-level autonomy controllers, similar to Hierarchical Finite State Machines
(HFSM). Although HFSMs are rigid structures and become less and less manageable as the
complexity of the system grows with additional features, BT-s are much easier to expand
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and maintain. An example of a complex BT high-level autonomy for an air-to-air combat
UAV is presented in [20]. In this example, the presented tree demonstrates the abilities of
the BT. A BT is a directed graph with nodes and edges in a strict parent/child order. Each
node can have multiple children and at most one parent. The node without a parent is the
root—the top-level entity, and nodes without children are the leaves. Non-leaf nodes can
be of type Selector, Sequence, Parallel and Decorator, while leaves can be Actions (Tasks)
or Conditions. The state of a node can be Running, Success or Failure. With these simple
building blocks, a complex high-level autonomy controller can be created with simple
a construction process. BT-s have a basic execution semantics as follows: (1) Prioritized
execution can be done using Selectors, where the ordering of the children nodes provides
the priority order, (2) Sequential execution is done with Sequence nodes, where each
previous node must either Succeed or Fail to trigger the next operation, and (3) Parallel
execution of tasks (and complete sub-trees) is also supported. In such a structure, it is easy
to insert additional actions, but it is more manageable than an equivalent HFSM.

BT-s also have a shared data structure called Blackboard (BB) where nodes can read
and modify the variables stored there [21], similar to a set of global public variables. The BB
variables can be atomic or compound data types. A BT is periodically evaluated, typically
with a fix rate, e.g., 1 HZ, so every running node executes an “update” method with
this rate.

3. System Architecture

Figure 1 shows the simplified high-level architecture of the AUV system. The exam-
ple BlueROV2 system architecture used in this paper supports BT-based robust mission
execution. This includes robustness to faults, anomaly detection and contingency action
with decisions based on a LEC with an AM.

Sensing Perception Planning Control Actuation

Physical System

Environment

Autonomy

System Software

System ModelWorld Model
Mission 

Model

System Hardware

Autonomy 

Manager

Figure 1. Simplified high-level system architecture.

3.1. Fault-Adaptive Autonomy

The system is divided into hardware, which is the AUV itself including thrusters,
actuators, CPU, etc., and software, which includes the autonomy engine and sensing-to-
actuation pipeline. The autonomy engine consists of a world model which describes the
AUV’s operating environment, including the occupancy grid-based pipeline map, obstacle
map and other smaller maps for navigation and guidance. The mission model describes the
AUV mission with the help of a mission file (what to execute) and a mission server (how
and when to execute). The system model is a representation of the AUV operational state,
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either nominal or degraded, and any identified hazards such as low battery or obstacle
detected. The autonomy manager implements the higher-level autonomy in the system,
including the mission execution, and LEC-based fault-adaptive operation.

In the System Software stack, there is a complete low-level pipeline from sensing to
actuation, supplying the inputs for the autonomy and the control output for the AUV. There
are complex sensors, including Side Scan Sonars (SSS) for infrastructure mapping [22],
Forward Looking Sonars (FLS) for obstacle avoidance [23] and altitude measurement,
and basic ones such as rotation-per-minute (RPM) and motor current sensors. In the
perception block, there are multiple LECs for processing the sensor data (e.g., there is a
Semantic Segmentation Convolutional Neural Network (SemSeg CNN) [24] for SSS and a
Long Short-Term Memory Recurrent Neural Network (LSTM RNN) [25] type for FLS). The
planning part processes the filtered sensory data (LEC outputs from the perception stage)
and based on the Autonomy it produces a Heading–Speed–Depth (HSD) command for the
control block. The control block uses the dynamic positioning controller available from
‘UUV Simulator‘ [26,27] package and makes a control output based on the HSD commands.
These commands drive the AUV‘s 6 thrusters in the physical layer with PWM signals
using MAVROS [28] conversion and a Pixhawk as a middleware unit (implementing the
command to PWM signal conversion).

The autonomy manager the focus of this paper (Figure 2). It contains an LEC-based
fault detection and isolation (FDI) module along with an AM. If the LEC with the AM
detects a thruster failure and the Assurance Evaluator verifies this fault, then the informa-
tion is passed to the BT control logic. Under autonomous operation, the FDI subsystem is
always running. It receives thruster RPM signals from the sensors and control commands
from the Control node. If the LEC and AM are indicating that the AUV is in nominal state,
and the Assurance Evaluator confirms this output, there is no need for reconfiguration.

If the LEC detects a degradation (Fault source), the AM calculates the Credibility and
Confidence metrics for that output. Using these values, the Assurance Evaluator marks the
output as reliable with a Fault Adaptation Required signal, and fault adaptation is initiated.
The LEC output class determines the degraded thruster (Actuator) and the approximate
degradation level. Based on this information, the Control node can perform a control
reallocation using a Thruster Allocation Matrix (TAM) which allows the AUV to continue
the mission. The details of the LEC and AM can be found in Section 4.3.1.

In our simulation environment, the Physical System (sensors, thrusters, etc.) is mod-
eled using Gazebo 9 [29]. Real world operation uses a Linux-based embedded computer
(Raspberry Pi3b or Nvidia Jetson TX1/2) with Ubuntu 16.04 LTS and ROS Kinetic with
MAVROS package (ROS to Mavlink conversion) and a compatible Pixhawk1 autopilot
with ArduSub 4.0+ firmware [30].

For the data generation process, we capture all the messages exchanged between ROS
nodes in ROS Bagfiles with a standard ROS internal service. The data collection is provided
by the ROS simulation environment, and we rely on the internal ROSbag mechanism [31].
We use the messages in the ROS Bagfiles as the source of training data for LEC Development
workflow provided by ALC-Toolchain. The training itself is a design-time process. In the
runtime system there is no explicit data collection for training.
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Figure 2. Detailed system architecture—focusing on the Autonomy Manager.

3.2. Evaluation Metrics

To evaluate the performance of the proposed architecture, multiple mission simula-
tions must be executed with obstacles and obstacle avoidance. The metrics available and
used for evaluation are as follows:

• FDI LEC recall and accuracy (Ground truth vs. LEC output)
• FDI LEC recall and accuracy with AM and assurance evaluator (Ground truth vs. LEC

+ AM + AE output)
• Mission execution time (s)
• Average cross-track error during mission (m)

Recall is defined as True Positives/(True Positives + False Negatives), accuracy is defined
as (True Positives + True Negatives)/All samples.

For real-time operation, the goal is an overall high recall and accuracy value—accepting
all correct LEC outputs while rejecting incorrect ones. Using these metrics, we can compare
the performance of our method compared to the raw LEC output. Mission execution time
and average cross-track error are calculated in real time, during the mission. Using these
metrics, we can compare the effect of the control reallocation compared to the degraded
operation without FDI.

4. Approach
4.1. Vehicle Details

In this paper, we use the ‘UUV Simulator‘ which is a Gazebo-based ROS package for
Unmanned Underwater Vehicles (UUVs). Both AUV-s and Remotely Operated Underwater
Vehicles (ROV) can be simulated with this package. The simulator supports the develop-
ment of two different kinds of underwater vehicles. The first type is thruster only ROVs,
operated in a small region using a tethering cable, such as BlueROV (http://bluerobotics.
com/store/rov/bluerov2), RexROV and Desistek SAGA. These precise, thruster-controlled
robots are useful for tasks such as manual pipe inspection or plume tracking. The second
type of vehicle group is the AUVs for long term—mainly autonomous—missions, like ECA
A9 (http://www.ecagroup.com/en/solutions/a9-e-auv-autonomous-underwater-vehicle)
or LAUV. These vehicles have only one main thruster which provides thrust for forward
motion only. Directional control is done using multiple control surfaces called fins. Since

http://bluerobotics.com/store/rov/bluerov2
http://bluerobotics.com/store/rov/bluerov2
http://www.ecagroup.com/en/solutions/a9-e-auv-autonomous-underwater-vehicle
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the two kinds of vehicles are different in their control surfaces, FDI and control reallocation
techniques are different as well.

Although the vehicle we use—BlueROV2—is a 6-DOF ROV, and the original Pixhawk
+ Raspberry Pi3 onboard computers provide only manual operation, using the simulator
and ROS this vehicle is converted to an AV. Further research will be performed to transition
the simulated vehicle and codebase onto the real BlueROV2.

4.2. Implementation
4.2.1. Autonomy Manager

On the original BlueROV2 there is a Pixhawk 1 low-level controller, with ArduSub
firmware acting as an attitude, depth sensor and actuator middleware [32]. The main
controller, the so-called ‘companion computer’, is a Raspberry Pi3b using custom code
with MavProxy which translates control inputs coming from the Raspberry Pi to Mavlink
messages compatible with Pixhawk. BlueROV2 has 6 thrusters: 2 for Z axis vertical
motion and roll stabilization and 4 for planar motion in the XY plane. The planar thrusters
are aligned in a 45-degree setup. With this 6-DOF layout the vehicle can move in the
longitudinal and lateral axis (forward and sideways) in manual mode. With the ‘UUV
simulator‘ DP controller it is considered to be a forward motion vehicle with heading
control—like an AUV—without sideways motion. The 45-degree thruster layout provides
redundancy for this kind of motion and allows thruster force to be reallocated to balance
thrust and torque loss in the event of a thruster degradation. The minimal setup of the
ArduSub is 2 parallel thrusters for longitudinal motion and heading control and one
thruster for depth control. With the 6 thrusters of the BlueROV, it is redundant in hardware
for every single partial or total thruster degradation, as well as some multiple partial
thruster degradations.

The controller stack in the ‘UUV simulator’ uses internal waypoints (WP) to run the
internal DP controller input. We create a command mode similar to the fly-by-wire-a
(FBWA) mode in Ardupilot or the ’Carrot’ chase type control in Paparazzi autopilot [33].
During every control update, our interface creates a temporary waypoint 50 m ahead of the
vehicle with the specific parameters and the DP controller follows this point. The control
movement is using a given Heading-Speed-Depth (HSD) command with a relative head-
ing change, an absolute target speed and an absolute target depth command. Using this
HSD from the different mission types like pipe following or mission waypoint following,
the HSD is translated to this internal, temporary WP in every update. This makes the
vehicle flexible to the mission types and gives a seamless path output using the correct
DP controller parameters. It is robust to moderate environment noises like underwater
disturbances thanks to the internal controller. If the heading change is greater than 90 de-
grees, the controller directs the UUV to make a three-point turn using reverse thrust, which
allows steep heading changes, including complete heading reversal, to be made. In every
mission the heading turn rate is limited typically to 30 deg/s.

The heart of the Autonomy Manager is a Behavior Tree-based control logic. The
system consists of three groups of nodes from the Root node. The root itself is Parallel type,
so all its children run concurrently without preemption or priority among them. Figure 3
presents the high-level view of the tree. The first group is a subtree of the blackboard
update nodes. All of these are subscribed directly to a ROS topic of the BlueROV2 such as
like battery information, distance from home or assurance monitor output. These nodes
are reading and storing the value of the corresponding topic to a ROS complex type BB
variable. This process is automatic in every tick.
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Figure 3. High-level BT in RQT.

In the update method for these nodes, the code performs comparison against preset
threshold values. When a threshold is crossed, a specific variable is set to a predefined
state. Typically, these variables are used as a warning flag, e.g., when the battery reaches
a critical state the bb_battery_warning will be set to True, and other nodes can react to
this flag. This subtree is always running each node in parallel, so no non-updating ROS
message blocks another one.

The second group is a set of high-level parallel nodes, namely: FDI subtree, obstacle
avoidance subtree and the mission server node. The FDI subtree runs the FDI LEC which
is described in Section 4.3.1 LEC section. It also has a check_reallocation node. Each
‘check’ node makes a comparison of a given BB variable against a preset value, and the
comparison result will be the state of the node (Success or Failure). Depending on this
output, a sequential task can be run if the check fails using the ‘Success is Failure’ (SiF) BT
node type.

The obstacle avoidance subtree creates the control output (HSD commands) from
the tree. It is the last step in the control logic and can access all the mission related HSD
commands. The code behind obstacle avoidance is using an obstacle map, which is a
Grid ROS type. This grid map is updated using a low-cost distance sonar (EchoSounder)
that gives a distance reading only, not detailed information compared to the imaging
sonars. Based on the AUV actual (estimated) position and the distance reading, an obstacle
shape is introduced to the map. In the Gazebo simulation, a uniform and scalable noise
can be added to the raw sonar data to mimic the real and noisy reading of the ranging
sonar. An additional LEC is created to filter out this noise using long short-term memory
(LSTM) architecture.

The obstacle avoidance compares the AUV orientation and the mission heading with
the obstacle map and checks for an obstacle-free heading to these directions. If there is
any obstacle in the way of the AUV or mission, the avoidance kicks in and produces an
appropriate HSD command. The avoidance heading is calculated based on the mission
directives, e.g., in underwater infrastructure (pipe) following mode, the obstacle avoidance
tries not to cross over the pipe to prevent pipe position estimation loss using the side scan
sonar data.

The mission server is the mission controller. In the beginning, it reads the mission
file—a YAML file which contains multiple mission descriptions. There are two main
mission categories: pipe tracking with side scan sonar or waypoint mission with predefined
waypoint, path list or a search pattern for search and rescue missions with automated
localization of an underwater locator beacon (analogous to an aircraft flight data recorder—
FDR). Each has its own set of parameters, target values and assurance directives with
specific exit strategies. For example, if there is an obstacle detected closer than a safe margin,
then it will abandon the mission and go to the surface while avoiding any obstacles. The
server loads the missions sequentially and sets the actual mission type with its parameters
in the BB. Once the mission completes, the next mission is loaded the same way until there
are no missions remaining. At the end, it commands the AUV to return to home (RTH).

The third and most complex subtree runs the mission execution. It is a Selector type
base node, called Priorities. In the mission execution, there are two base modes: pipe
following and waypoint following, as described earlier. This subtree handles the mission
level and the AUV level contingency actions as well. These contingency actions are the
so-called ‘failsafes’, similar to the Ardupilot autopilot.
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Available failsafes:

• BATTERY_LOW, when battery level is equal or less than AUV failsafe battery low
threshold. Selected action: Surface AUV.

• SENSOR_FAILURE, when sensor failure occurs, e.g., RPM sensor. Selected action:
Surface AUV

• OBSTACLE_STANDOFF, when the detected obstacle is closer than the given mission
level threshold

• RTH, when battery level is at a boundary point compared to home distance, meaning
it is the last chance to return to home with the actual battery level. Selected action:
RTH if function is enabled

• GEOFENCE, when reached maximum distance from home. Selected action: RTH
• PIPE_LOST, when pipe lost more than failsafe tracking lost threshold seconds ago. This

is 120 s by default, which is sufficiently long to avoid false-positives due to buried
sections of pipe. If the pipe is lost during pipe tracking, the AUV enters loiter mode
and will return to pipe tracking mode once the pipe is detected again.

Each failsafe is set in a hierarchy, in the order of the list above. In the subtree, they are
at the same level with the mission nodes. Thus, the mission execution can be suspended
if a failsafe occurs. Even a low-level failsafe like GEOFENCE can be suspended by the
highest-level BATTERY_LOW failsafe. The Selector type ensures that only the highest
priority child is running, either a failsafe of mission from the Priorities. Which one is active
depends on the Checks (SiF type nodes). Each failsafe has one check based on comparing
current values in the BB against preset thresholds. The active mission is set by the Mission
Server, based on the mission execution state.

The mission subtree base nodes are Sequential BT nodes. Both have a Check for the
requested mission type, thus they are in a Running state only when the actual mission is
set by the mission server and there are no active failsafes. For the pipe tracking there is a
specific task which generates the HSD output for the mission, and there are a.m. related
nodes. One such a.m. node listens to the side scan sonar imaging LEC and checks whether
its inputs are conformant with the LEC training data. The output of the a.m. provides an
indicator whether the LEC output is useful or unreliable. If the a.m. output starts to rise,
a leaf task in the BT is triggered and commands the AUV to proceed with minimal forward
speed. If it is still not enough and the a.m. output rises even further, the tree disables
pipe position estimation task via the pipe estimation enable/disable leave tasks. When
the a.m. output returns to a nominal level, the tree switches back to the estimation task
and commands full forward speed. The physical battery life constrains of the BlueROV
and it does not allow for tracking the infrastructure as long as a torpedo shaped AUV (e.g.,
ECA A9) can. For this reason pipe tracking does not have any exit condition other than
battery level, but it is easy to extend the tree for pipe length or maximum tracking time
limits using the same logic for a long operation range AUV.

For the waypoint mission there are also checks for mission type and mission comple-
tion. If, for example, the waypoint mission type is ‘Search and Rescue for FDR’, when all
the waypoints are completed from the search pattern an FDR location estimation task runs
and creates a final waypoint for the estimated position. This waypoint is a Loiter_n_turns
type which makes the AUV loiter in a circle around a given point on the seafloor with
a given radius. During this, side scan sonars are active, and the waterfall image can be
analyzed for debris and possible FDR signs.

4.2.2. Mission Execution

A general mission specification contains following objectives: generate a desired
path is given from the initial AUV position to the area of the target infrastructure with
the minimum number of waypoints. These waypoints can be defined in the local coordi-
nate system (North, East, Down—NED), global coordinate system (Latitude, Longitude,
Altitude in decimal degree format—LLA) or with relative headings from the starting
position. The next mission is the pipe following mode, which begins once the AUV is
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positioned in the operating area and has acquired the infrastructure using the side scan
sonars. In this mode the AUV follows the pipe, including any bends and buried sections.
If the pipe is lost, the PIPE_LOST failsafe activates, and the AUV starts to loiter looking
for the pipe as described earlier. Other failsafe conditions can occur such as GEOFENCE,
RTH or BATTERY_LOW. Each of these commands the AUV to the surface at the end.
If there is enough battery charge left, the AUV returns to the home (initial) position before
surfacing. During all these actions, the obstacle avoidance and degradation detection is
active. The degradation management is the topic of the next chapters, where it is presented
in detail.

4.3. LEC Assurance Monitoring and Decision Making
4.3.1. Learning-Enabled Component for Fault Detection and Isolation

The objective of the fault detection component in the BlueROV2 is to observe and
interpret the operation of the 6 thrusters, as well as the heading change commands, and to
detect when a thruster reallocation is needed. This operation is handled by a Deep Neural
Network (DNN), called FDI LEC, because of its ability to handle the uncertainty and
variability of the real world. The input data for the FDI LEC is a 13-element vector
containing the 6 thruster input commands, the 6 thruster RPMs and the heading change
command. The thruster RPMs are a function of the commanded velocity and heading.

DNNs are generally non-transparent and reasoning about individual classifications is
problematic, which makes their integration in safety-critical systems challenging. For this
reason, the FDI LEC needs to be complemented with assurance monitoring and assurance
evaluation functions to determine the correctness of each classification as shown in the
Autonomy Manager subset in Figure 2. During the system operation of the BlueROV2,
inputs regarding the thruster operation arrive one by one. After receiving each input the
FDI LEC detects: (1) whether a thruster is faulty and (2) the level of degradation of the
faulty thruster. The assurance monitor then computes a credibility and confidence value
for the FDI LEC’s classification. The assurance evaluator combines these two values to
decide whether the classification is trustworthy.

Because of the low-dimensional input space, the FDI LEC is chosen to be a fully
connected, feed-forward DNN with 3 hidden layers. Details regarding the architecture are
presented in Table 1. This architecture is chosen to achieve good detection accuracy for
the task, avoid over-fitting, and keep computational requirements low while also explore
how a general-purpose and easily implementable DNN can be integrated in an assurance
monitoring and evaluation framework.

Table 1. FDI LEC architecture.

# Layer Layer Parameters

1 Input 13 units

2 Dense 256 units, ReLU

3 Dense 32 units, ReLU

4 Dense 16 units, ReLU

5 Output 22 units

4.3.2. Assurance Monitoring

The role of the a.m. is to quantify how trustworthy the output of the LEC is. The In-
ductive Conformal Prediction (ICP) framework [34] allows computing credibility and
confidence values for a particular LEC classification. We consider a training set {z1, . . . , zl}
of examples, where each zi ∈ Z is a pair (xi, yi) with xi the feature vector and yi the label of
that example. Central to the application of ICP is a nonconformity function or nonconformity
measure (NCM) which quantifies how different a labeled input is from the examples in the
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training set. For a given test example xi with candidate label ỹi, a NCM computes an indica-
tive value of how strange the pair (xi, yi) is, given the training set {z1, . . . , zi−1, zi+1, . . . , zn}.
There are many proposed NCMs that can be used [35–39]. In this work, we chose the nearest
centroid NCM for its performance in real time applications.

When two input vectors x1 and x2 are similar, they are expected to have the same labels.
To compute the similarity between any two input vectors we use a Siamese network [40].
A Siamese network fd maps an input vector x into an embedding representation v = fd(x)
and is trained to minimize the Euclidean distance between the embedding representations
of inputs belonging to the same class while maximizing it for inputs belonging to different
classes. Since the representations of data points with the exact same label are expected to
be close to each other in the embedding space, for each class yi we compute its centroid

µyi =
∑

ni
j=1 vi

j
ni

, where vi
j is the embedding representation of the jth training example from

class yi and ni is the number of training examples in class yi. The NC function is then
defined as

α(x, y) =
d(µy, v)

mini=1,...,n:yi 6=y d(µyi , v)
(1)

where v = fd(x). It should be noted that for computing the nearest centroid NCM, we
need to store only the centroid for each class regarding a training set, no matter how large
the training set may be.

The NCM a(x, y) is a measure of dissimilarity between a test input x with candidate
label y and the training data z1 . . . zl . When the Euclidean distance between v = fd(x) and
the centroid assigned to the class y is small, this is an indication that the DNN has been
trained in similar examples while a large distance value indicates an uncommon example.
Hypothesis testing is used to mathematically define what small and large are in this context.
The training set z1 . . . zl is split into two parts: (1) the proper training set z1 . . . zm of size
m < l that is also used for training the Siamese network and the FDI LEC, and (2) the
calibration set zm+1 . . . zl of size l−m. We first compute the NCMs a(xi, yi), i = m+ 1, . . . , l
for the examples in the calibration set. Given a test example x with an unknown label y,
for each candidate label ỹj, j = 1, . . . , c, ICP computes a p-value pj as the fraction of the
calibration nonconformity scores that are equal or larger than the nonconformity score of
the test input α(x, ỹj):

pj(x) =
|{α ∈ A : α ≥ α(x, j)}|

|A| (2)

These p-values are then used to compute the classification credibility and confidence.
Assuming the FDI LEC produces a classification ŷ:

credibility = pŷ (3)

confidence = 1− max
j=1,...,c:j 6=ŷ

pj (4)

The credibility shows how credited ŷ is and the confidence shows how special it is
compared to the other possible labels. These two metrics define the following four scenarios
(Table 2):
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Table 2. Scenarios that can be observed for different values of confidence and credibility.

Credibility Confidence Description

High High The preferred situation that usually leads into accepting the
FDI LEC classification. pŷj is high and much higher than the
p-values of the other classes.

High Low pŷj is high but there are other high p-values so choosing a
single credible class may not be possible.

Low High None of the p-values are high for a credible decision.

Low Low A label different than ŷj could be more credible.

4.3.3. Assurance Evaluator

The p-values computed by ICP are indicative of which of the FDI LEC predicted labels
are trustworthy. The quality of the predictions can be evaluated through the credibility and
confidence metrics. As presented in Table 2 trustworthy classifications tend to have high
p-values and higher than the p-values of the rest of the classes. The assurance evaluator
decides if a classification can be trusted and if not will raise an alarm which may require
further investigation. For this operation we use the concept of selective classification [41,42].
A selective classifier ( f , g) decides whether to keep the classification from an underlying
model or reject it and is defined as:

( f , g)(x) ,

{
f (x), if g(x) = 1
reject, if g(x) = 0

(5)

where f is a classifier, and g : X → {0, 1} is a selective function that we call assurance
evaluator. Consider a function k that evaluates the classifications of f and a threshold θ.
The selective function g is defined as, gθ(x|k, f ) = 1[k(x, ŷ f (x)| f ) > θ]. A selective classi-
fier is evaluated using the coverage and risk metrics. Coverage is a metric of the frequency
f classifications are accepted by g. Risk is the error-rate in the accepted classifications.
These measures can be empirically evaluated using any finite labeled set Sm. The empirical
coverage φ̂ and risk r̂ are computed as:

φ̂( f , g|Sm) ,
1
m

m

∑
i=1

g(xi) (6)

r̂( f , g|Sm) ,

1
m ∑m

i=1 l( f (xi), yi)g(xi)

φ̂( f , g|Sm)
(7)

where l( f (xi), yi) = 1 if f (xi) = yi otherwise l( f (xi), yi) = 0.
For a given classifier f we optimize the assurance evaluator g based on the area under

the RC curve (AURC) defined in [43]. Consider an independent set of n labeled points Vn
and let the set Θ , {k(x, ŷ f (x)| f ) : (x, y) ∈ Vn}. Using every value in Θ as a threshold for g
we can compute n empirical risk and coverage values and plot a risk-coverage (RC) curve.
The choice of k affects the performance of the assurance evaluator and it is preferable for
the rejected points to be otherwise incorrectly classified so that we may have high coverage
with low risk. The AURC is used to evaluate the performance of a pair ( f , g),

AURC(k, f |Vn) =
1
n ∑

θ∈Θ
r̂( f , gθ |Vn). (8)

A function k needs to be chosen to minimize AURC, which intuitively minimizes the
average empirical risk of a given empirical coverage value.
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The assurance evaluator is constructed with a choice of a classification evaluator
function k and a threshold θ. k is expressed as a linear combination of the credibility and
confidence, computed by the assurance monitor,

k(x, ŷ f (x)) = a ∗ credibility(x, ŷ f (x)) + b ∗ confidence(x, ŷ f (x)). (9)

The computation of the pair of values (a, b) that lead to the optimal assurance evaluator
happens during design time using an independent labeled set Vn that has not been used
for training f . We perform a grid search for a, b ∈ [0, 1] that minimize the AURC and yields
the optimal risk and coverage curve. Based on the RC curve and the mission requirements
regarding the accepted risk and coverage of the assurance evaluator (r∗, c∗), a threshold θ
is chosen such that (r̂, ĉ) = (r∗, c∗).

4.4. Decision Making

The output of the FDI LEC is a class which represents either a nominal state or
identifies the faulty thruster, with the approximate level of degradation. The representation
is non-linear. There are 22 classes, one (#21) for nominal. For the Z axis thrusters (no and
5) there is only one degraded class (#20). The AUV considered nominal, if the thruster
efficiency is greater than or equal to 90%, and faulty otherwise. There is no reallocation
for these two, since we cannot balance the torque with the other 4 for depth control and
balancing 4 or 5 to the same level might cause the AUV to be stuck underwater without
the necessary thrust to surface. For Z axis thruster degradation the system only raises an
alarm through the BB nodes. If these warnings persist the AUV goes to the surface.

For the planar thrusters, we distinguish two levels of degradation: severe if the
efficiency is between 0 to 50%, and mild degradation if it is between 50 to 90%. Over 90% it
is classified as nominal. There is one severe class covering the lower 50% efficiency and
four mild classes with 10% efficiency steps for each thruster. For the reallocation of the
mild cases, the class center is used. For example, if the ground truth efficiency was 63% it is
classified to the 60–70 range, and the reallocation is done for 65%. Thus, if the classification
is correct, the thrust error after reallocation will be a maximum of 5%, which will not cause
major heading offset error.

The mild degradation means the thruster has some efficiency loss, e.g., partially
blocked blades due to seaweed or other object, but remains operational and safe for the
AUV to use it further. For this degradation, we must balance the torque loss with the
opposing side thruster through the Thruster Allocation Matrix (TAM) provided by the
‘UUV simulator‘. It describes the relation of the 6-DOF motion of the AUV with its custom
thrusters. The operation is done in the reallocation leaf of the FDI subtree of the BT.

Severe degradation means it has some serious issue (e.g., fishing net caught in thruster,
broken blade(s), damaged motor or speed controller electronics). In this case, it is unsafe
to continue using that thruster. To prevent further damage and lower the risk, the control
reallocation leaf turns off the degraded thruster and its pair. Thus, the torque will be in
balance, but the sum of all thrust will be half of the original for planar motion. The AUV
speed will be considerably lower compared to the nominal state, but it is still operational
and can continue the mission.

4.5. Assurance Monitor Design and Execution

To present in detail the steps needed to design the assurance monitor and evaluator as
well as the system execution, Algorithms 1 and 2 summarize the offline and online algorithms.

At design time, the assurance monitor is calibrated to quantify the trustworthiness
of each classification. The idea is that an LEC will likely classify an input correctly when
its training dataset containing similar input data. First, the LEC classifier and the Siamese
network used for the assurance monitor are trained with the proper training set. Calibration
of the assurance monitor based on ICP is achieved by computing the NC scores of the
calibration data using the nearest centroid NCM. These NC scores are stored and used to
compute the credibility and confidence values for each classification. The design of the
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assurance evaluator performed offline using test data and aims at computing the evaluator
function that minimizes the AURC as well as choosing a threshold for the selective function.
The threshold is chosen according to the application requirements regarding the acceptable
decision frequency and error-rate by choosing an operation point on the RC curve.

During execution, when the system receives an input, the LEC classifier generates a
classification. The Siamese network first transforms the input to an embedding classifica-
tion, and the assurance monitor computes a p-value for each possible class by comparing
each class’s NC score with the ones computed on the calibration set during design time.
Then, the credibility and confidence values are computed for the particular classification.
The assurance evaluator computes a linear combination of the credibility and confidence
and decides if the classification can be trusted or not based on the chosen threshold.

Algorithm 1 Design time

Input: proper training data (X, Y), calibration data (Xc, Yc), offline test data (Xt, Yt).
1: Train the classification LEC f with (X, Y) as training set and (Xc, Yc) as validation set.
2: Train the Siamese network fd with (X, Y) as training set and (Xc, Yc) as validation set.
3: // Compute the nonconformity scores for (Xc, Yc) using Equation (1).
4: A = {α(x, y) : (x, y) ∈ (Xc, Yc)}.
5: Compute the p-values for all the classes of the data in (Xt, Yt) using Equation (2).
6: Compute the credibility and confidence for the data in (Xt, Yt) using Equations (3)

and (4).
7: Perform a grid search to compute the coefficients a, b to define the evaluator function k

shown in Equation (9) to minimize the AURC shown in Equation (8).
8: Construct the set Θ = {k(x, ŷ f (x)| f ) : (x, y) ∈ (Xt, Yt)}.
9: Using every value in Θ as a threshold for the selective function g, plot the Risk-

Coverage curve according to Equations (6) and (7). This is used to select an operation
point (threshold) θ according to the application requirements.

Algorithm 2 Execution time

Input: Classification LEC f , Siamese network fd, nonconformity scores A, evaluator func-
tion k, threshold θ for the selective function g, test input xt.

1: Compute the classification ŷt = f (xt).
2: Compute the embedding representation vt = fd(xt).
3: for each possible class j do
4: Compute the nonconformity score α(xt, j) using Equation (1).
5: pj(xt) =

|{α∈A:α≥α(xt ,j)}|
|A| .

6: end for
7: Compute the credibility and confidence for (xt, ŷt) according to Equations (3) and (4).
8: if gθ(x|k, f ) = 1 then
9: return ŷt.

10: else
11: return No decision.
12: end if

4.6. Decision-Making Execution-AUV Example

Section 4.5 presents the architecture and the algorithm for the AM. In this section, we
illustrate the algorithm using an AUV example. Algorithm 3 below describes in detail
how the method is applied for decision-making in the BlueROV fault-adaptive autonomy
example. Once the control logic receives the assured output from the LEC AM, based on
the output class and the BlueROV2 vehicle specific parameters, it preforms the control
reconfiguration as necessary.
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Algorithm 3 Execution-time Steps for BlueROV example

Input: Classification LEC f , siamese network fd, nonconformity scores A, evaluator func-
tion k, threshold θ for the selective function g, real-time input xt.

1: Compute the classification ŷt = f (xt).
2: Compute the embedding representation vt = fd(xt).
3: for each possible class j do
4: Compute the nonconformity score α(xt, j) using Equation (1).
5: pj(xt) =

|{α∈A:α≥α(xt ,j)}|
|A| .

6: end for
7: Compute the credibility and confidence for (xt, ŷt) according to Equations (3) and (4).
8: if gθ(x|k, f ) = 1 then
9: Get degraded thruster id ID and efficiency η from class ŷt

10: if η > 90% then
11: return Nominal State.
12: else
13: if ID is in [4, 5] then
14: Show ’Z axis degradation warning’
15: return Degraded State-no control reconfiguration required
16: else
17: if η < 50% then
18: Show ’Severe XY axis degradation warning’
19: Get ID thruster pair IDp from definition
20: Turn off ID and IDp
21: else
22: Show ’Mild XY axis degradation warning’
23: Get ID thruster pair IDp from definition
24: Perform control reallocaton-set IDp to η to balance torque loss
25: end if
26: return Degraded State - control reconfiguration complete
27: end if
28: end if
29: else
30: return Nominal State - LEC output not trustworthy.
31: end if

5. Results

For data gathering, multiple waypoint-following missions were created, including
planar and vertical axis thruster degradations. There was a total of 349 experiments
simulated. Each experiment was 300 s long with 1Hz resolution. The initial 20 s of each
simulation was considered invalid since the ROS nodes are booting up, the output of
several nodes are incorrect during this time. This leaved an effective time of 280 s for each
simulation and covered the nominal and all the degraded classes with efficiencies from 0%
to 100%. Labeled data points gathered from the simulations were then shuffled and split to
form the proper training set, with 80% of the available data, and the calibration set with
the remaining 20%.

The proper training set was used to train the FDI LEC as well as train the Siamese
network, part of the assurance monitor. The calibration set was used to compute the
calibration NC scores as shown in (1) and was also used as validation set during the
training of the FDI LEC and the Siamese network. Both the FDI LEC and the Siamese
network had the same architecture with only difference that the Siamese network lacked
the output SoftMax layer with 22 units. Because of the relatively small size and 1-D shape
of the input, we used a fully connected DNN with three hidden layers and ReLU activation
functions. The first had 256 units, the second had 32 and the last had 16 units. In the case
of the Siamese network, the last hidden layer computed the embedding representations.
The training and validation accuracy of the FDI LEC were 0.925 and 0.926, respectively.
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We evaluated the performance of the Siamese network in clustering data belonging in the
same class using the silhouette analysis [44]. The silhouette value s(i) ∈ [−1, 1] of a data
point i showed how close it was to data points of the same class and far from data points of
different classes. The mean s(i) over all data of the entire dataset was a measure of how
appropriately the data had been clustered. The mean silhouette value of the training set and
the calibration/validation set were both 0.64 showing that the embedding representations
computed using the Siamese network were placed in clusters according to their similarity.

During execution time the FDI LEC is complemented with the assurance monitor
and the assurance evaluator to decide whether a classification could be trusted. For a
given test input and FDI classification, the assurance monitor computed the credibility
and confidence through Equations (3) and (4). The assurance evaluator decided about the
quality of the classification by comparing the classification evaluation function value (9)
with a chosen threshold. To compute the optimal classification evaluator function as a
linear combination of the credibility and confidence during design time, we collected eight
test sequences, representative of the simulated missions. We performed a grid search for
a, b ∈ [−1, 1] to find the linear combination of credibility and confidence that minimized the
AURC using the offline test data. The optimal Risk-Coverage curve is shown in Figure 4
and was generated using a = 0.9 and b = −0.3. The leftmost point in the curve was
achieved when no decision is taken because the chosen threshold could not be reached by
the classification evaluation function. The rightmost point in the curve was achieved when
a decision was taken for every classification. An operation point could be chosen according
to the requirements for accuracy and decision frequency.

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0.00

0.02

0.04

0.06

Ri
sk

Figure 4. Optimal Risk-Coverage curve.

A total of 60 waypoint scenarios were made with different random seeds, with and
without control reallocation, for each fault class with possible control reallocation (classes #0
to #19, without #20 for z axis thrusters and nominal #21). These scenarios were similar to the
training and test data missions, but with a fixed number (five) of waypoints. The scenario
was made with and without FDI LEC and control reallocation to compare the results.

These simulations were similar to the training dataset, but had intense heading
changes, resulting in overall lower accuracy compared to the training/validation/test
data. The reason for this was to check the a.m. technology how well can it preform in
hazardous environment—close to obstacles. Table 3 presents the metrics with different as-
surance technologies. Applied threshold is the value used for the corresponding technology.
For real-time operation, the goal was an overall high recall and accuracy value—accepting
all correct LEC outputs while rejecting incorrect ones.
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Table 3. Metrics with different assurance technologies.

LEC +
a.m. + AE

LEC + AM,
Credibility
Threshold

Raw LEC,
SoftMax

Threshold

Raw LEC,
NO AM

Applied Threshold −0.1 0.6 0.99 -

Recall 98.37% 91.64% 21.45% 84.05%

Accuracy 93.85% 92.37% 33.24% 84.05%

Rejected 12.54% 29.50% 81.24% 0.00%

Figure 5 presents a five-waypoint mission scenario. The total simulation time was
150 s. The AUV started from 0,0 coordinates and followed the generated waypoints.
After completing the last waypoint, the AUV turned into loiter mode.

In a nominal state, the AUV completed the mission in an average of 88.67 s with
1.69 m cross-track error.

Figure 6 presents the same scenario with a severe degradation, the front left thruster
had efficiency dropped to 41% at t = 50 s during the second left turn. With this severe
degradation, the AUV could not take the last right turn towards the waypoint since it
lacked the necessary torque. With the fault-adaptive autonomy in the same setup, the FDI
LEC classified the degradation correctly 1 s after it occurred, and the system made a control
reallocation decision—turning off the front severely degraded thrusters. The AUV still
finished the path, shown in Figure 7, but the final loitering trajectory was different due to
loss of front thrusters.

Figures 8 and 9 show the same scenario with mild degradation (rear right thruster
had a degradation with 66.5% efficiency at t = 50 s). The FDI LEC decided in under 3 s and
reallocated the rear left thruster to 65%. Without reallocation, the AUV could not finish the
mission, but with reallocation it successfully completed in under 150 s.

Figure 5. waypoint mission—nominal path.

Figure 6. waypoint mission—path with severe degradation.
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Figure 7. waypoint mission—path with severe degradation and reallocation.

Figure 8. waypoint mission—path with mild degradation.

Figure 9. waypoint mission—path with mild degradation and reallocation.

In Table 4, simulation results without the FDI LEC shows the intense effect of degra-
dation to the mission. In 27 out of 60 cases, the AUV could not finish the mission due to
loss of control. A value of ‘−1‘ in the in Time to complete column indicates all simulations
failed to complete the mission in that class. The average cross-track error was 5.75 m and
the average time to complete the mission was 90.55 s.

Table 4. Waypoint scenario without reallocation.

GT
Degradation
Thruster ID

GT
Degradation

Efficiency (%)

GT LEC
Class

Cross
Track

Error (m)

Time to
Complete

(s)

0 41 0 5.54 −1.00

0 56.5 1 2.05 93.00

0 66.5 2 1.85 90.33

0 76.5 3 1.74 89.33

0 86.5 4 1.75 90.67

1 41 5 5.37 86.00

1 56.5 6 1.91 93.67



Sensors 2021, 21, 6089 19 of 22

Table 4. Cont.

GT
Degradation
Thruster ID

GT
Degradation

Efficiency (%)

GT LEC
Class

Cross
Track

Error (m)

Time to
Complete

(s)

1 66.5 7 1.81 91.33

1 76.5 8 1.53 88.00

1 86.5 9 1.60 88.00

2 41 10 11.94 −1.00

2 56.5 11 16.27 −1.00

2 66.5 12 12.81 −1.00

2 76.5 13 3.00 88.50

2 86.5 14 1.74 91.00

3 41 15 12.94 −1.00

3 56.5 16 13.74 −1.00

3 66.5 17 9.74 −1.00

3 76.5 18 5.62 −1.00

3 86.5 19 2.10 93.00

In Table 5, the averaged simulation results can be seen—the mission completion time
in seconds with and without FDI. Without FDI, the AUV could not finish the mission in
6 out of 60 cases due to the degradation. With FDI, the AUV finished more cases with
a shorter average completion time (88.21 s vs. 90.55 s) under the 150 s simulation time
limit. In general, based on these simulations, the BlueROV was more sensitive to rear
thruster degradations. Even with the FDI, in some cases it still could not make the mission
in time as classes #10 and #15 indicate with values of ‘−1‘ in column Time to complete with
reallocation. The average time for reallocation was 2.42 s, which means the FDI successfully
detected the problem from 2–3 samples after introducing degradation to the system. The
average cross-track error during simulation was 1.63 m.

Table 5. Waypoint scenario with reallocation.

GT
Thruster

ID

GT
Efficiency

(%)

FDI LEC
Thruster

ID

FDI
LEC
class

Cross
Track

Error (m)

Time to
Complete

(s)

Reallo-
Cation

Time (s)

0 41 0 0 1.37 87.00 1.41

0 56.5 0 1 1.63 87.00 2.42

0 66.5 0 2 1.53 85.00 1.38

0 76.5 0 3 1.68 88.33 2.12

0 86.5 0 4 1.78 92.00 4.44

1 41 1 5 1.36 86.00 1.41

1 56.5 1 6 1.60 87.33 1.36

1 66.5 1 7 1.64 88.50 1.40

1 76.5 1 8 1.81 91.00 2.37



Sensors 2021, 21, 6089 20 of 22

Table 5. Cont.

GT
Thruster

ID

GT
Efficiency

(%)

FDI LEC
Thruster

ID

FDI
LEC
class

Cross
Track

Error (m)

Time to
Complete

(s)

Reallo-
Cation

Time (s)

1 86.5 1 9 1.66 88.00 2.04

2 41 2 10 5.73 −1.00 1.36

2 56.5 2 11 1.64 88.00 1.71

2 66.5 2 12 1.44 86.00 3.39

2 76.5 2 13 1.61 88.00 2.02

2 86.5 2 14 1.79 89.67 8.37

3 41 3 15 4.62 −1.00 2.05

3 56.5 3 16 1.90 91.00 2.40

3 66.5 3 17 1.75 90.33 1.71

3 76.5 3 18 1.63 88.67 1.36

3 86.5 3 19 1.60 86.00 3.37

Finally, In Table 6, the average metrics of the mission execution time and the cross-
track error are shown. As expected, the AUV in degraded state performed worse (2.6%
slower and with 3.5 times higher cross-track error), while the AUV with fault-adaptive
autonomy performed very close to the nominal state.

Table 6. Waypoint scenario metrics.

Time to Complete
(s)

Cross-Track Error
(m)

Nominal 88.21 1.63

Degraded 90.55 5.75

Degraded
with FDI 88.66 1.69

6. Discussion

We have presented a fault-adaptive system architecture for Learning-Enabled Com-
ponent (LEC) equipped autonomous vehicles operating in a hazardous environment. We
have implemented a Deep Neural Network (DNN) called Fault Detection and Isolation
(FDI) LEC with an Inductive Conformal Prediction (ICP) framework-based Assurance
Monitor (AM). With the a.m. in the Cyber-Physical System (CPS), we quantify how trust-
worthy the LEC output is in real time. The Autonomy Manager captures the information
provided by the FDI LEC and commands a control reallocation if necessary to maintain
control and complete mission objectives. The autonomy system applied to an Autonomous
Underwater Vehicle (AUV) based on BlueROV2 has several contingency actions in the
vehicle and in the mission level such as battery low failsafe or pipe lost failsafe which all
triggers a safety action.

The real-time assurance monitor for the LEC in the CPS provides a secure and reliable
operation for the FDI system. The new a.m. Assurance Evaluator (AE) can significantly
raise the overall performance of the LEC output (raw LEC recall is 84.05% vs. LEC with a.m.
and AE recall is 98.37%). With this high performance, the fault classification is dependable
for a control reallocation in the middle of an autonomous mission—without a high risk of
a possible incorrect fault isolation. Our fault-adaptive system architecture makes the AUV
robust against hazards during operation in an unknown underwater environment.
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Future extensions are planned for the BlueROV2 AUV to further raise the contingency
possibilities and widen the safety of the autonomous systems.
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