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Abstract: Modelling and analysis of biochemical systems such as sugar cataract development (SCD) are critical
because they can provide new insights into systems, which cannot be easily tested with experiments;
however, they are challenging problems due to the highly coupled chemical reactions that are involved. The
authors present a stochastic hybrid system (SHS) framework for modelling biochemical systems and
demonstrate the approach for the SCD process. A novel feature of the framework is that it allows modelling
the effect of drug treatment on the system dynamics. The authors validate the three sugar cataract models by
comparing trajectories computed by two simulation algorithms. Further, the authors present a probabilistic
verification method for computing the probability of sugar cataract formation for different chemical
concentrations using safety and reachability analysis methods for SHSs. The verification method employs
dynamic programming based on a discretisation of the state space and therefore suffers from the curse of
dimensionality. To analyse the SCD process, a parallel dynamic programming implementation that can handle
large, realistic systems was developed. Although scalability is a limiting factor, this work demonstrates that the
proposed method is feasible for realistic biochemical systems.
1 Introduction
Modelling and analysis of biochemical systems are important
tasks because they can unlock insights into the complicated
dynamics of systems, which are difficult, expensive or
presently impossible to test experimentally. A variety of
techniques have been used to model biochemical systems, but
their effectiveness is often limited by trade-offs imposed by
the modelling paradigms. Stochastic differential equations
(SDEs) have been used to model biochemical reactions [1, 2];
however, analysis of these models has mainly been limited to
simulation. Hybrid systems have also been used to model
biochemical systems [3, 4]; however, verification methods
based on deterministic hybrid systems fail to capture the
probabilistic nature of some biochemical processes and
therefore may not be able to correctly analyse certain systems.
Stochastic hybrid systems (SHS) have been used to capture
the stochastic nature of biochemical systems but have
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previously only been used for simulations [5] or analysis of
systems with simplified continuous dynamics [6].

In this paper, we present an SHS framework for modelling
biochemical systems and demonstrate the approach for the
sugar cataract development (SCD) process. An accumulation
of sorbitol is thought to be a major factor in the development
of a sugar cataract. An explanation of the theorised process
and experimental data can be seen in [7]. Certain drugs have
been developed to limit the efficiency of the enzymatic
reactions, thus reducing the chance of cataract development.
However, many such drugs have off-target or unpredicted
effects, which perturb the system in other, often unexpected
ways. The chemical reactions and kinetic coefficients for the
model have been previously studied [8], but a model
incorporating the effect of drug treatment has, to our
knowledge, not been created. Understanding the exact
conditions that lead to the development of sugar cataracts and
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how drug treatment will potentially reverse the conditions will
help better predict and prevent sugar cataracts from developing.

This work provides several new contributions. Our SHS
framework can be used to model and simulate complex large-
scale biochemical systems. We illustrate the approach using
the SCD starting from an existing model to establish realistic
parameters. We then present two new models of medication-
controlled SCD that extend previous SHS models. The first
model incorporates the medication administration policy and
models the effect that the medication has on the chemical
reactions. The second new model adds probabilistic delays to
capture both the absorption of the drug into the system and
the eventual drug metabolism.

We validate the SHS models by comparing trajectories
computed by two simulation algorithms, the hybrid
stochastic simulation algorithm (HSSA) and hybrid Euler–
Maruyama (HEM) algorithm. These algorithms extend
the stochastic simulation algorithm (SSA) and Euler–
Maruyama (EM), respectively, by incorporating switching
between discrete modes. Further, we show that the HEM
algorithm is an order of magnitude more efficient than the
HSSA algorithm and can achieve similar accuracy.

We use a dynamic programming verification method based
on a discretisation of the state space to analyse the SCD
problem [9]. We analyse both safety and reachability
properties of the medicated and non-medicated models. In
the context of SCD, we can use the safety verification to
determine the probability that a cataract will develop from
any state of the system. We can use reachability analysis to
determine the probability that the patient will reach a safe
condition without first developing a cataract. This is
particularly useful when analysing the effectiveness of a
drug. We apply the SHS verification methods described in
[9] for analysing the SCD system. While the stochastic
dynamics of biochemical processes in general can be
accurately modelled by the chemical master equation
(CME), the equation is impossible to solve for most
practical systems [1]. The SSA is equivalent to solving the
master equation, but if the number of molecules of any of
the reactants is large, the SSA is not efficient [5]. It is
computationally intractable to enumerate all possible states
of the model employed by the SSA for formal verification
because the reaction rates depend on the concentrations,
and the SSA models individual molecules. Therefore our
approach suggests starting with the continuous stochastic
dynamics and generating discrete approximations with
coarser (and variable) resolution.

The proposed verification method suffers from the curse
of dimensionality, so we have developed a parallel dynamic
programming implementation of the verification algorithm
that can handle large systems. The parallel algorithm
enhances performance by dividing the problem among many
processors to distribute memory storage and computation.
Although scalability is a limiting factor, this work
The Institution of Engineering and Technology 2009
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demonstrates that the parallel technique is feasible for realistic
biochemical systems. Further, we present a practical error
analysis method which characterises the quality of the
solution based on the resolution of the approximation.

The SHS modelling framework offers many advantages for
modelling biochemical systems. It allows for continuous time
and event-driven dynamics in multiple time scales in a
stochastic context. The method has the ability to model
multiple behavioural modes of a system as well as the
switching dynamics between the modes in order to capture,
for example, the effects of medication. The resulting
framework can be used to model systems with complex
nonlinear dynamics while still formally defining the
execution and behaviour. The simulation algorithms offer
efficiency and simplicity. SHS simulation is significantly
more efficient than the SSA algorithm because it uses a
coarser resolution without significantly affecting accuracy.

In addition to simulation, SHS offer a formal framework
for probabilistic verification of reachability properties. In
contrast to analysis based on Monte Carlo methods, formal
verification of stochastic systems is an exhaustive technique
that computes the probability that the system trajectory for
arbitrary initial states will reach a target set while avoiding
unsafe regions and it considers an infinite time horizon.
Such analysis can generate insights that cannot be obtained
by simple simulations. The parallel methods we have
developed enable the analysis of systems with up to seven
continuous dimensions that correspond to the number of
reacting chemical species. The analysis method uses a
discrete grid approximation and can currently handle the
order of 109 discrete states. The large, fine grid ensures
an accurate approximation and generates reachability
probabilities for every possible initial condition of the system.

The organisation for the rest of the paper is as follows:
Section 2 describes the related work, Section 3 describes
modelling of biochemical systems and our three SHS
models of SCD, Section 4 describes the probabilistic
verification method, Section 5 presents our experimental
results and Section 6 concludes the work.

2 Related work
SCD has been studied previously and modelled because it is
an important problem, and the dynamics of the system are
complex and difficult to test experimentally [8]. The
structure of SDH has been used in a molecular modelling
program (DOCK) to analyse nearly 250 000 compounds
from the National Cancer Institute Database and predict
those with high affinity for SDH [10]. Such compounds
can be tested in diabetes models as potential therapeutics.

Experimental advances in the biological sciences can be
incorporated into formal modelling and analysis techniques
to benefit both fields mutually. Previous research has
applied modelling and analysis techniques to biological
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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systems from species population evolution to molecular
dynamics, but generally the models have been limited in
size or accuracy because of computational restrictions. As
computing power has increased, modelling and analysis
approaches have evolved to take advantage of the increased
power to improve accuracy and speed. Formal analysis of
the models for these and other systems has provided new
insights into complicated or difficult to test systems.
Modelling the effect of drugs and specifically enzyme
inhibitors is an important task because it can enhance the
understanding prior to the execution of actual experiments,
which have inherent disadvantages. Previous drug
modelling has focused mainly on the physical interactions
at the molecular level [11–13]. Modelling of enzyme
inhibitors has not, to our knowledge been attempted in
conjunction with chemical reactions at the scale that we
present.

Stochastic p-calculus is a modelling framework that is able
to express systems of concurrent components [14]. These
components, or processes, each define a continuous time
Markov chain (MC) and therefore they can be simulated
using Gillespie’s algorithm. Several tools have been created,
which implement the semantics of Gillespie’s algorithm for
stochastic p-calculus models [15, 16]. The models are
countably infinite, so verification can only be performed
symbolically, and current symbolic verification techniques
are unable to handle nonlinear dynamics. Nonlinear
dynamics are common in biochemical systems, so
verification of realistic systems with this technique is limited.

SDEs have been used for modelling cell signalling
pathways and molecular motion [4, 2, 14]. Since only
specialised cases of SDEs can be solved analytically, the
vast majority of models are simulated using Monte Carlo
techniques. Our models use SDEs to model the continuous
dynamics; however, we also incorporate discrete dynamics
to model phenomena such as medication application.

Nonstochastic hybrid systems have been used for modelling
biological systems in order to capture the complicated dynamics
using well-defined abstractions. Biomolecular network
modelling is accomplished by using differential equations to
model feedback mechanisms and discrete switches to model
changes in the underlying dynamics [3]. Biological protein
regulatory networks have been modelled with hybrid systems
using linear differential equations to describe the changes in
protein concentrations and discrete switches to activate or
deactivate the continuous dynamics based on protein
thresholds [4].

SHS further improve on the accuracy of hybrid systems
by providing a more realistic probabilistic framework for
modelling real-world biochemical systems. A modelling
technique that uses SHS to construct models for chemical
reactions involving a single reactant specie is presented in
[6]. An algorithm for computing the reachability probability
of SHS is presented in [17]. A genetic regulatory network
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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was modelled with an SHS model and compared to a
deterministic model in [18]. SHS models of biochemical
systems have been developed and simulated using hybrid
simulation algorithms in [5, 19].

Several modelling and simulation techniques have been
developed that combine other modelling techniques to
improve the overall accuracy of the methods. Methods that
combine the use of ordinary differential equations with the
SSA are described in [20–23]. A method that combines
t-leaping and the next reaction technique is described in
[24]. The methods do not formally allow for the inclusion
of external hybrid dynamics, nor do they include stochastic
continuous dynamics. Tools for the stochastic simulation of
chemical reactions have been developed in [25, 26].

The finite state projection (FSP) algorithm can be applied
to the solution of the CME as an alternative to the SSA
algorithm and Monte Carlo methods [27]. The approach
has been extended to systems with multiple time scales
[28]. FSP utilises a method of model reduction based on
knowledge about a specific system. While this method is
efficient, it is restricted to a finite time horizon. Further,
small changes to the model (such as medication effects)
may change the model reduction. The lattice of states
generated by the FSP could be used by our verification
method and incorporating the model reduction technique
into our SHS framework is a promising research direction.

The analysis technique described in this paper employs
a reachability analysis method based on discrete
approximations. Discrete approximation methods based on
finite differences have been studied extensively in [29]. On
the basis of discrete approximations, the reachability
problem can be solved using algorithms for discrete
processes [30]. The approach has been applied for optimal
control of SHS given a discounted cost criterion in [31].
For verification, the discount term cannot be used and
convergence of the value function can be ensured only for
appropriate initial conditions. A related grid-based method
for safety analysis of stochastic systems with applications to
air traffic management has been presented in [32]. Our
approach is similar but using viscosity solutions we show
the convergence of the discrete approximation methods [9].

Reachability analysis for SHS can be performed using
Monte Carlo methods [33]. Multiple stochastic simulations
are used to determine the reachability probability for an
initial state of an SHS. Confidence intervals and accuracy
probabilities can be selected by adjusting the number of
simulations. Stochastic roadmap simulation extends the
Monte Carlo technique by analysing multiple trajectories
simultaneously. The analysis of these ensemble properties
can significantly improve the understanding of the entire
system [34]. Our technique extends this notion to analyse
all possible starting values and trajectories simultaneously;
however, scalability remains a limiting factor of our approach.
139
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3 Modelling biochemical
reactions using SHS
In this section, we present techniques for modelling biochemical
processes using SHS. First, we present the chemical reaction
modelling method used and then we describe extensions to
these techniques to model medications. We conclude by
formally defining SHS, which we use to model the
biochemical systems.

3.1 Dynamics of biochemical reactions

Chemical reactions are inherently probabilistic because of the
unpredictability of molecular motion, so stochastic models
are ideal for describing the dynamics accurately [35]. Slow
reactions occur when reaction rates and concentrations are
small enough and they can be modelled and simulated
efficiently using discrete stochastic techniques. However,
discrete simulations become inefficient when there are large
concentrations of molecules and/or fast reaction rates.
When discrete models become inefficient, these ‘fast’
reactions can be accurately modelled as continuous
stochastic models [5].

Fast reactions occur at a rate that is fast enough to consider
as occurring at a constant rate therefore eliminating the need
to consider individual reactions. Such reactions can be
modelled more efficiently as continuous stochastic models.
The rate of change of each chemical species in a fast
reaction is calculated using the chemical dynamics from the
biochemical reactions using (1) [5, 36]

dxi ¼
XMfast

j¼1

vjiaj(x(t))dt þ
XMfast

j¼1

vji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj(x(t))

q
dwj (1)

Biochemical systems can contain a mixture of both fast and
slow reactions. When fast and slow dynamics must both be
considered it is most efficient to use a combined, hybrid
modelling approach to take advantage of the efficiency of
continuous modelling for the fast reactions while still
keeping the accuracy of discrete modelling for the slow
reactions. Determining which reactions are fast or slow is
based on analysis of the rates using the kinetic coefficients
and chemical concentrations. To determine the slowest
rate, the smallest possible concentrations for each chemical
species are used. Similarly, the fastest rate can be
determined by using the highest possible concentrations.
Since the reaction rates depend on the concentrations,
reactions may be classified as either fast or slow dynamically
based on the system state.

3.2 Medication modelling

Understanding how a biochemical system will operate under
normal conditions is important; however, in many systems, it
is advantageous to understand how the system will act when
it is perturbed by outside influences such as a medication.
The interaction of a drug with a biochemical system is
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 16
important to model and analyse because often the
anticipated affect of the drug is altered by unforeseen
influences, and theoretical modelling and testing can help
to demonstrate the safety of a medication before it is tested
on real subjects.

Drugs are administered to patients to improve their health
by altering the equilibrium of the biochemical reactions
responsible for their symptoms. There are several defining
characteristics of drugs that are considered when modelling
their behaviour. Drugs can generally be classified as either
stimulants or inhibitors that increase or decrease reaction
rates. The efficacy of a drug is the potential therapeutic
response that a it might produce. Additionally, drugs are
metabolised by the body at varying rates, so the decay of
the drug must be understood to accurately model its
behaviour.

The most direct drug modelling approach is to add the
relevant chemical species and reactions. While this may
appear to be a logical approach, it adds complexity to the
system, and may not completely describe the effects of the
drug if certain chemical reactions are not considered. A
simpler technique is to model the behaviour of a drug as an
inhibitor or stimulant and avoid increasing the number of
chemical reactions or chemical species considered.

Because stimulants and inhibitors alter the reaction rates of
certain reactions, modelling the effect of a drug on a given
chemical reaction can be accomplished by altering the
kinetic coefficients. The amount of change of the kinetic
coefficients is determined by the efficacy and metabolism
rate of the drug. For the SCD model, discrete modes
describe the system under different drug influences, and
discrete transitions model the application and metabolism
of the drug.

SHSs are ideal for modelling the effect of medication
in biochemical systems because they are able to model
continuous and discrete dynamics in a stochastic framework
which is both efficient and accurate. To describe our
approach, we will next define a formal model of SHSs.

3.3 Stochastic hybrid systems

We adopt the model presented in [37]. To establish the
notation, let Q be a set of discrete states. For each q [ Q,
we consider the Euclidean space Rd (q) with dimension d(q)
and we define an invariant as an open set X q # Rd (q). The
hybrid state space is denoted as S ¼

S
q[Q {q}� X q.

Let �S ¼ S < @S and @S ¼
S

q[Q {q}� @X q denote the

completion and the boundary of S, respectively. The Borel
s-field in S is denoted as B(S).

Definition 1: A SHS is defined as H ¼ ((Q, d , X ),
b, s, Init, l, R) where Q is a set of discrete states (modes),
d: Q! N is a map that defines the continuous state space
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
doi: 10.1049/iet-syb.2008.0101

, 2009 at 11:37 from IEEE Xplore.  Restrictions apply.



IET
doi

www.ietdl.org
dimension for each q [ Q, X: Q! Rd(�) is a map that
describes the invariant for each q [ Q as an open set
X q # Rd (q), b: Q � X q

! Rd(q) and s : Q� X q
! Rd (q)�p

are drift vectors and dispersion matrices, respectively, Init:
B(S)! [0, 1] is an initial probability measure on S, l:
S̄! Rþ is a non-negative transition rate function and
R : �S � B( �S)! [0, 1] is a transition measure.

To define the execution of the system, we denote
(V, F , P) the underlying probability space, and consider an
Rp-valued Wiener process w(t) and a sequence of stopping
times ft0 ¼ 0, t1, t2, . . .g. Let the state at time ti be
s(ti) ¼ q(ti), x(ti)

� �
with x(ti) [ X q(ti). When there is no

confusion, we will use interchangeably the notation (q, x)
and s for the hybrid state to simplify complex formulas and
often we will use the notation sti

¼ (qti
, xti

) for brevity.
While the continuous state stays in X q(ti), x(t) evolves
according to the SDE

dx ¼ b(q, x)dt þ s(q, x)dw (2)

where the discrete state q(t) ¼ q(ti) remains constant and the
solution of (2) is understood using the Itô stochastic integral
[38]. A sample path of the stochastic process is denoted by
xt(v), t . ti, v [ V.

The next stopping time tiþ1 represents the time when the
system transitions to a new discrete state. The discrete
transition occurs either because the continuous state x exits
the invariant X q(ti) of the discrete state q(ti) (guarded
transition) or based on an exponential distribution with
transition rate function l (probabilistic transition).
Therefore tiþ1 can be defined as the minimum between
two other stopping times: (i) The first hitting time of the
boundary @X q(ti) defined as t�iþ1 ¼ inf {t � ti , x(t) [
@X q(ti)} and (ii) a stopping time tiþ1 described by an
exponential distribution with survivor function

M(t, v) ¼ exp �

ðt

ti

l(q(ti), xz(v))dz,

 !
, v [ V

Thus, the time of the next discrete transition tiþ1 is a
stopping time whose distribution is defined by the survivor
function

F (t, v) ¼ I(t,t�
iþ1

) exp �

ðt

ti

l(q(ti), xz(v))dz

 !
, v [ V

where I denotes the indicator function. Given a set A [ F
the indicator function is defined as IA(v) ¼ 1 if v [ A and
0 if v � A.

At time tiþ1 the system will transition to a new discrete
state and the continuous state may jump according to the
reset measure R. The trajectory of x(t) is assumed to be
left-continuous, so we denote x(t�iþ1) the solution of (2) at
t ¼ tiþ1 and s(t�iþ1) ¼ (q(t�iþ1), x(t�iþ1)) where q(t�iþ1) ¼ q(ti)
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
: 10.1049/iet-syb.2008.0101

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 16
the discrete state before the transition. If tiþ1 ¼ 1, the
system continues to evolve according to (2) with q(t) ¼
q(ti). If tiþ1 , 1, the system jumps at tiþ1 to a new state
s(tiþ1) ¼ q(tiþ1), x(tiþ1)

� �
according to the transition

measure R(s(t�iþ1), A) with A [ B(S). The evolution of the
system is then governed by the SDE (2) with q(t) ¼ q(tiþ1)
until the next stopping time.

Fig. 1 shows a generic SHS model with two states and
two transitions (one probabilistic and one guarded). The
continuous dynamics of each state are defined by the
associated SDEs. The probabilistic transition fires at the
firing rate l, and the guarded transition fires when x hits the
boundary x [ @X q2 . The logical condition x [ @X q2 is often
referred to as the guard of the transition. Upon firing of a
transition, the state resets according to the map R((q, x), A).

The following assumptions are imposed on the model. The
functions b(q, x) and s(q, x) are bounded and Lipschitz
continuous in x for every q, and thus the SDE (2) has a
unique solution for every q. The transition rate function l is a
bounded and measurable function, which is assumed to be
integrable for every xt(v). For the transition measure, it is
assumed that R(., A) is measurable for all A [ B(S), R(s, .) is
a probability measure for all s [ S and R((q, x), dz) is a
stochastic continuous kernel. Also, the boundaries @X q are
assumed to be sufficiently smooth and the trajectories of the
system satisfy a non-tangency condition with respect to the
boundaries. A sufficient condition for the non-tangency
assumption is that the diffusion term is non-degenerate, that
is, a(q, x) ¼ s(q, x)sT(q, x) is positive definite. Furthermore,
it is assumed that the set Q is finite and that X q is bounded
for every q. Let Nt ¼

P
i It�ti

denote the number of jumps
in the interval [0, t]. It is assumed that the expected number
of jumps is finite for every initial state s [ S, that is Es

[Nt] , 1. A sufficient condition for ensuring finitely many
jumps can be formulated by imposing restrictions on the
map R(s, A) [9, 39].

3.4 Sugar cataract modelling

This section describes three SHS models of the biochemical
process of SCD. The first model describes the biochemical
process of SCD. The two subsequent models extend the
first model to include the effect of medication on the
system. The first medicated model assumes that the effect
of the drug on the system is instantaneous, while the final

Figure 1 Stochastic hybrid system
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model is designed to incorporate probabilistic delay to model
absorption and metabolisation.

SCD model (SCD1): A sugar cataract distorts the light
passing through the lens of an eye by attracting water to
the lens when an excess of sorbitol is present. Often these
cataracts are formed in the eyes of diabetic patients who
have highly fluctuating blood sugar levels. Several factors
affect the accumulation of sorbitol including the amount of
the enzyme SDH. SDH catalyses the reversible oxidation
of sorbitol and other polyalcohols to the corresponding
keto-sugars [8]. There are eight chemical species involved
in the reaction: NADH(x1), E–NADH(x2), NADþ(x3),
E–NADþ(x4), SDH(x5), Fructose(x6), Sorbitol(x7) and the
inactive form of SDH (Z).

A SHS model for SCD (SCD1) has been previously
presented in [5, 40]. The ranges are bounded and are
estimated using realistic concentration values derived from
experimental data and Michaelis–Menten constants (Km)
defined as the rate of the reaction at half-maximal velocity
[8]. Table 1 describes the seven reactions and rates involved
in SCD. The rates are calculated based on the average
concentrations for each chemical species and the kinetic
coefficients presented in Table 1. The first six reactions are
classified as fast and the last reaction is classified as slow
because it is orders of magnitude slower than the other
reactions. Further discussion on the classification of fast
and slow reactions can be found in [5].

Each of the six fast reactions are modelled using the SDE
(1). The inactive form of SDH (Z) is not a reactant in any of
the chemical equations, so its concentration is not modelled.
The equations describe the rates of change of the individual
chemical species and are

dx1 ¼ (�k1x1x5 þ k2x2)dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1x1x5

p
dw1 þ

ffiffiffiffiffiffiffiffiffi
k2x2

p
dw2

dx2 ¼ (k1x1x5 � k2x2 � k3x2x6 þ k4x4x7)dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1x1x5

p
dw1

�
ffiffiffiffiffiffiffiffiffi
k2x2

p
dw2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3x2x6

p
dw3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k4x4x7

p
dw4

dx3 ¼ (k5x4 � k6x3x5)dt þ
ffiffiffiffiffiffiffiffiffi
k5x4

p
dw5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k6x3x5

p
dw6

dx4 ¼ (k3x2x6 � k4x4x7 � k5x4 þ k6x3x5)dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3x2x6

p
dw3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k4x4x7

p
dw4 �

ffiffiffiffiffiffiffiffiffi
k5x4

p
dw5 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k6x3x5

p
dw6

dx5 ¼ (�k1x1x5 þ k2x2 þ k5x4 � k6x3x5)dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1x1x5

p
dw1

þ
ffiffiffiffiffiffiffiffiffi
k2x2

p
dw2 þ

ffiffiffiffiffiffiffiffiffi
k5x4

p
dw5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k6x3x5

p
dw6

dx6 ¼ (�k3x2x6 þ k4x4x7)dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3x2x6

p
dw3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k4x4x7

p
dw4

dx7 ¼ (k3x2x6 � k4x4x7)dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3x2x6

p
dw3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k4x4x7

p
dw4

The single slow reaction SDH ! Z describes the conversion
of the enzyme (SDH) into its inactive form at a rate of k7x5.
When the reaction occurs, the number of molecules of x5 is
decreased by one and the concentration is decreased by
The Institution of Engineering and Technology 2009
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d1 ¼ 10221 mM. The SHS model can be seen in Fig. 2. The
reset on the transition (x5� ¼ d1) describes the effect of the
single slow reaction on the concentration of x5. For the SCD
system, the classifications of the reactions do not change
dynamically because the kinetic coefficients are significantly
different and the chemical concentrations do not fluctuate
widely.

SCD model with medication control (SCD2): Drugs can help
patients who are at high risk of developing sugar cataracts.
These drugs work by inhibiting the enzyme SDH thereby
reducing the rate at which SDH reacts with other
molecules in the system. This initially results in less
sorbitol production; however, since the reversible reactions
are tightly coupled, the results can have side effects such as
increasing the fructose levels.

We have created a new SHS model (SCD2), shown in
Fig. 3, of drug-modulated SCD to include the effect that
drug has on the system. The application of the drug
is represented as a new discrete mode that represents

Table 1 Sugar cataract reactions and kinetic coefficients

Reaction Kinetic
coefficient

Rate

SDHþ NADH! E 2 NADH k1 ¼ 6.2 31.1

E 2 NADH! SDHþ NADH k2 ¼ 33 151

E 2 NADHþ F! E 2 NADþ þ S k3 ¼ 0.0022 6

E 2 NADþ þ S! E 2 NADHþ F k4 ¼ 0.0079 19.5

E 2 NADþ ! SDHþ NADþ k5 ¼ 227 998

SDHþ NADþ ! E 2 NADþ k6 ¼ 0.61 3.2

SDH! Z k7 ¼ 0.0019 0.002

Figure 2 SHS model of SCD1

Figure 3 SHS model of medication-controlled SCD2
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drug-influenced dynamics where the reaction rates k1, k6 and
k7 are reduced by 50% to model the inhibition of the enzyme.
Since the drug is metabolised slowly and the amount that the
rates are reduced is directly proportional to the concentration
of the drug, modelling a constant concentration is a
reasonable approximation.

We have modelled the drug administration based on an
elevated level of fructose. It is assumed that patients self-
monitor and self-administer the medication. When the
amount of fructose in the blood rises above a threshold
d3 ¼ 250 mM, we use a guarded transition to drive the
system to a new state, which introduces the effect of the
drug. When the fructose level drops back below d3, we use
another guarded transition to transition to the original state
effectively removing the effect of the drug. We also include
resets on the mode transitions to avoid infinitely fast
switching that arises due to the stochastic nature of the
Wiener process. The reset increases or decreases the
fructose concentration by d2 ¼ 1 mM. Fast switching could
also be avoided by using guards that do not overlap (a
slightly larger value for increasing guards and a slightly
smaller value for decreasing guards). We selected to use
state resets in order to reduce the number of the states
required by the discrete approximation of the SHS.

This type of guard eliminates the need for the reset on the
transition, but we found that this was not appropriate for this
model, and it adds complexity to the analysis of the system.

SCD model with probabilistically delayed medication effect
(SCD3): The SCD2 model is effective for demonstrating the
effect of medication on the reactions; however, realistically the
effect of the drug will not be immediate because of variable
drug metabolism rates. Drugs are generally administered in a
form called a prodrug, which allows the transport of the
actual drug to the appropriate cells. This prodrug is
metabolised into an active form of the drug at different rates
for different people. Furthermore, once a patient discontinues
taking a drug, the body can metabolise the residual drug at
variable rates depending on many factors.

We have developed a model (SCD3), seen in Fig. 4, which
incorporates two new states to model the delay of the
conversion from prodrug to drug (q2) and metabolism after
dosage is discontinued (q4). We use guarded transitions to
model exiting the medicated and non-medicated states and
entering the respective delay states. We then use probabilistic
transitions to model the exit from the delay states to model
the stochastic nature of the conversion and metabolism rates.
The value d4 ¼ 0.05 is the rate of an exponential distribution
that models the delay incurred by the conversion of
prodrug to drug, and d5 ¼ 0.05 is the value, which models
the exponential distribution corresponding to the drug
metabolism delay. These values were chosen so the average
delay is on the order of one hour, which is reasonable for the
SCD system, but the values could be easily changed to model
other types of medications. SHS can also incorporate the
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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continuous state into the transition rate if such a model is
necessary.

The continuous dynamics of the medicated (q3) and non-
medicated (q1) states are consistent with SCD2. The
dynamics of the delay state q2 are the same as those in state
q1 to reflect the lack of change while the prodrug is being
converted into the drug. The dynamics in the delay state q4

model the metabolism of the drug after the administration
is removed, so the kinetic coefficients are adjusted to reflect
their half-life values. The coefficients can be adjusted to
model various drugs.

3.5 Simulation results

To better understand and validate our models, we present
simulation results using variants of the SSA and EM
algorithms. The SSA simulates chemical reactions consuming
reactants and creating products one reaction at a time.
Individual reactions in a system are assigned probabilities of
occurrence, and probability distributions are used to choose,
which reaction fires at each iteration. Once a reaction fires, the
quantities of reactants and products are updated [1]. The SSA
is very accurate because of its level of precision, but it can be
inefficient for large systems or fast reactions because many
iterations must be completed before results can be observed.
To efficiently handle practical systems, computational
improvements such as t-leaping or R-leaping have been
devised for the SSA [41, 42]. R-leaping increases the number
of reactants consumed and products produced in each step
by a factor of R. This increases the efficiency of the
approximation, but will degrade the accuracy for certain systems.

For simulation of SCD2 and SCD3, we have created a new
algorithm, the HSSA, which implements the SSA using
R-leaping and discrete transitions between modes. The

Figure 4 SHS model of medication-controlled SCD3 with
delays
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standard R-leaping SSA is extended to incorporate the
discrete dynamics, which are found in the SCD2 and
SCD3 models. After each iteration of the SSA, the guards
for all valid transitions are tested, and a transition which
validates its guard conditions is fired if possible. Once the
transition resets have been executed, the SSA algorithm
resumes in the new state.

One iteration of the SSA describes the evolution of the
chemical system over a very small unit of time and is
considered to be equivalent to solving the CME for that
state and timestep. Interrupting the multiple iterations of
the SSA required to define a longer time span does not
affect the convergence of the SSA, and is used in all fast/
slow chemical simulation techniques for decomposing the
problem to make it more efficient. Therefore the HSSA
can be considered as equivalent to solving the CME with
hybrid switches.

The stochastic continuous dynamics of the SCD models
presented in this work can be directly simulated using EM
approximations [43]. EM approximations estimate the rate
of change of the individual chemical species based on the
current chemical concentrations and viable reactions. An
appropriate step size must be chosen for the system to
ensure an accurate approximation.

To accurately model the discrete transitions of the SCD
models, we have developed a variant of the EM
approximations called the HEM. In HEM, discrete
transitions are incorporated into the EM approximations by
analysing the state between steps of updating the
continuous dynamics. If a guard condition on a transition
is satisfied, then the transition is fired and resets are
executed. Once the state is updated, the EM algorithm
continues in the new state. Probabilistic transition firing is
determined for both HEM and HSSA using the technique
described in [39]. We draw a sample from a uniform
distribution and test the exponential decay at various times
to determine the jump time for each probabilistic
transition. When the exponential decay is greater than or
equal to the random value, the transition is fired.

Since the SSA algorithm accurately numerically simulates
the stochastic time evolution of well-stirred coupled
chemical reactions [42], we compare the results of our
HSSA and HEM algorithms to demonstrate accuracy of
the SHS models. In Fig. 5 we compare the sorbitol and
fructose concentrations for the SCD1, SCD2 and SCD3,
models, respectively. We chose sorbitol and fructose
because they are the two chemicals that are most directly
correlated with the development of cataracts. The initial
conditions and parameters for all the experiments are
shown in Table 2 from [44]. Figs. 5a–5c display the
average concentration at each time step for sorbitol and
fructose for 100 runs of the three models. The figures
display the comparison between the HSSA and HEM
approximation for sorbitol and fructose to demonstrate the
The Institution of Engineering and Technology 2009
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correctness of the SCD models. The 100 HSSA
simulations completed in 98 h, and the 100 HEM
simulations took 8 min on a 3 GHz desktop computer.

4 Probabilistic verification
In this section, we formulate the safety and reachability
problems for the SCD system, we show that both can be
characterised as viscosity solutions of a system of coupled
HJB equations, and we present a numerical method for
solving these equations.

4.1 Problem formulation

Biologists have determined that a ratio of sorbitol to fructose
that is greater than one is correlated to the beginning stages of
sugar cataract formation [45]. It has been shown that fructose
and SDH play a significant role in the accumulation of
sorbitol in the eye, which in turn begins the formation of
sugar cataracts.

Simulations can determine whether or not a certain
starting state will eventually lead to sugar cataract
formation; however, it is much more useful to examine all
possible starting states, which can be accomplished through
verification. Since a ratio of sorbitol to fructose that is
greater than one is correlated to the beginning stages of
sugar cataract formation, we have identified those states,
which meet that criteria as the set of unsafe states. States
with a sorbitol to fructose ratio greater than 0.5 but less
than 1 correspond to eyes, which are possibly at risk, but
not at high risk of cataract formation. States with a ratio
of less than 0.5 are at low risk and therefore are desirable,
or target states. The unsafe and target sets are depicted
in Fig. 6.

Medication can be administered to inhibit the enzyme
SDH, which is intended to help keep sugar cataracts from
forming in high-risk patients. The safety probability for the
medicated model describes the probability that an initial
state will transition to an unsafe state given the
administration policy for the drug. The reachability
probability for a state describes the probability that the
patient will transition from the current state to a safer state
without first reaching the unsafe states under the given
drug administration policy.

4.2 Reachability analysis

Safety is a special case of the reachability problem, so we will
formulate the reachability problem first and then the safety
problem. The target and unsafe sets for SHS can be
described as unions of target and unsafe sets, respectively,
for multiple modes. Let T ¼ <q[QT

{q}� T q and
U ¼ <q[QU

{q}� U q be subsets of S representing the set

of target and unsafe states, respectively. We assume that T q

and U q are proper open subsets of X q for each q, that is,
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Figure 5 SCD simulation results

a SCD1
b SCD2
c SCD3
@T q > @X q
¼ @U q > @X q

¼ 0= and the boundaries @T q and
@U q are sufficiently smooth. We define G q

¼ X q
n ( �T

q
<

�U
q
) and G ¼ <q[Q{q}� G q. The initial state (which, in

general, can be a probability distribution) must lie outside
the sets T and U. The transition measure R(s, A) is
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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assumed to be defined so that the system cannot jump
directly to U or T.

Consider the stopping time t ¼ inf {t � 0 : s(t) [ @T <
@U } corresponding to the first hitting time of the boundary
145
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of the target or unsafe set. Let s be an initial state in G,
then we define the function V : �G! Rþ by

V (s) ¼
Es[I(s(t�)[@T )], s [ G

1, s [ @T
0, s [ @U

8<
:

where Es denotes the expectation of functionals given the
initial condition s and I denotes the indicator function.
The function V (s) can be interpreted as the probability
that a trajectory starting at s will reach the set T while
avoiding the set U. If the state hits the boundary of
the unsafe or target set, then the value function will take
the value 0 and 1, respectively, and it is assumed that
the execution of the SHS terminates.

Given the assumptions on the sets T and U and their
boundaries, we can construct a bounded function c : �S!
Rþ continuous in x such that

c(q, x) ¼
1, if x [ @T q

0, if x [ @U q < @X q

�

We define a counting process p� by

p�(t) ¼
X1
i¼1

I(t�ti)
I(s(ti� )[@S)

The process p�(t) counts the number of times the trajectory
hits the boundary @S and jumps up to time t [46]. Then,

Figure 6 Graphical depiction of the unsafe and target sets

Table 2 Initial conditions and constants for the SCD models

Initial Cond. Value, mM Constant Value

x1 5.0 d1 10221 mM

x2 0.0 d2 5 mM

x3 5.0 d3 250 mM

x4 0.0 d4 0.05

x5 1.0 d5 0.05

x6 253.0 HEM step 0.0001

x7 0.0 R 0.10
The Institution of Engineering and Technology 2009
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the value function V can be written as

V (s) ¼ Es

ð1

0

c(qt� , xt� )dp�(t)

� �
(3)

The formulation of the reachability problem described above
can be modified to describe safety. In a safety problem, we
are given a set of safe states and we want to compute the
probability that the system execution from an arbitrary (safe)
initial state will go outside the safe set. Let B ¼ <q[QB

{q}�
Bq be a subset of S representing the set of safe states. We
assume that the set of unsafe states X q

nBq for each q is a
proper subset of X q, that is, @X q > @Bq

¼ 0=. The initial
state must lie inside the safe set B and the transition measure
R(s, A) is defined so that the system cannot jump out of the
safe set directly to the unsafe set. We can transform
the safety problem to a reachability problem by defining the
target set as T q

¼ X q
nBq and the unsafe set as U q

¼ 0=.
Note that in this case, the definition of Gq becomes
G q
¼ X q

n(T q > U q) ¼ Bq. Clearly with this
transformation, the probability that the system is unsafe can
be computed as the value function described by (3) similarly
to the reachability problem.

Using a dynamic programming argument, it can be shown
that the value function V for the reachability problem of
SHSs is similar to the value function for the exit problem of a
standard stochastic diffusion, but the running and terminal
costs depend on the value function V itself. A detailed proof
of the derivation can be found in [9]. We define LV (q, x) ¼
l(q, x)

Ð
G

V (y)R((q, x), dy), cV (q, x) ¼ c(q, x) þ
Ð
G

V (y)
R((q, x), dy) and L(t) ¼ exp �

Ð t

0 l(q0, xz)dz
� 	

. Then for
s [ G

V (s) ¼ Es

ðt�1

0

L(t)LV (qt� , xt� )dt þL(t�1 )cV (qt�
1
, xt�

1
)

" #

(4)

Equation (4) is similar to the discounted cost criterion with a
target set of a standard stochastic diffusion [29]. The main
difference is that the running cost LV (q, x) and the terminal
cost cV (q, x) depend on the value function. It should be
noted that the SHS satisfies the strong Markov property, and
the same procedure can be repeated every time a jump occurs.
Further, it can be shown under the non-degeneracy
assumption that V is bounded and continuous [9, 44]. Then,
based on the results of [29] V can be characterised as the
viscosity solution of a system of HJB equations. In particular,
V is the unique viscosity solution of the system of equations

HV (q, x), V , DxV , D2
xV

� �
¼ 0 in G q, q [ Q (5)

with boundary conditions

V (q, x) ¼ cV (q, x) on @G q, q [ Q (6)
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where

HV (q, x), V , DxV , D2
xV

� �
¼ b(q, x)DxV

þ
1

2
tr(a(q, x)D2

xV )þ l(q, x)V þ LV (q, x)

Equation (5) describes a set of coupled second-order partial
differential equations (one for each discrete state), with
boundary conditions given by (6), which can be viewed as a
set of HJB equations associated with the reachability problem
for the SHS. The coupling between the equations arises
because the value function in a particular mode depends on
the value function in the adjacent modes and is formally
captured by the dependency of the running and terminal
costs L V (q, x) and cV (q, x) on the value function V.

4.3 Numerical methods for reachability
analysis

One of the advantages of characterising reachability as a
viscosity solution is that for computational purposes we can
use well-known numerical algorithms. In this paper, we
employ the finite difference method presented in [29] to
compute locally consistent MCs that approximate the original
stochastic process while preserving local mean and variance.
We consider a discretisation of the state space denoted by
�S

h
¼ <q[Q{q}� �S

h

q where �S
h

q is a set of discrete points
approximating X q and h . 0 is an approximation parameter
characterising the distance between neighbouring points. By
abuse of notation, we denote the sets of boundary and interior
points of �S

h

q by @Sh
q and Sh

q , respectively. By the boundness
assumption, the approximating MC will have finitely many
states, which are denoted by sh

n ¼ (qh
n, jh

n), n ¼ 1, 2, . . . , N .

First, we consider the continuous evolution of the SHS
between jumps and assume that the state is (q, x). The local
mean and variance given by the SDE (1) on the interval [0,d] are

E[x(d)� x] ¼ b(q, x)dþ o(d)

E[(x(d)� x)(x(d)� x)T] ¼ a(q, x)dþ o(d)

Let {qh
n ¼ q, jh

n} describe the MC on Sh
q , X q with transition

probabilities denoted by ph
D((q, x), (q0, x0)). A locally consistent

MC must satisfy

E[Djh
n] ¼ b(q, x)Dth(q, x)þ o(Dth(q, x))

and

E[(Djh
n � E[Djh

n])(Djh
n � E[Djh

n])T]

¼ a(q, x)Dth(q, x)þ o(Dth(q, x))

where Djh
n ¼ jh

nþ1 � jh
n, jh

n ¼ x and Dth(q, x) are appropriate
interpolation intervals (or the ‘holding times’) for the MC.
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The diffusion transition probabilities ph
D((q, x), (q0, x0)) and

the interpolation intervals can be computed systematically
from the parameters of the SDE (details can be found in
[29]). For a uniform grid with ei denoting the unit vector in
the ith direction, the transition probabilities are

ph
D((q, x), (q, x + hei)) ¼

aii(q, x)=2þ hb+i (q, x)

Q(q, x)

ph
D((q, x), (q, xþ hei þ hej)) ¼ ph

D((q, x), (q, x� hei � hej))

¼
aþij (q, x)

2Q(q, x)

ph
D((q, x), (q, x� hei þ hej)) ¼ ph

D((q, x), (q, xþ hei � hej))

¼
a�ij (q, x)

2Q(q, x)

and the interpolation intervals are Dt(q, x) ¼ h2=Q(q, x)
where Q(q, x) ¼

P
i aii(q, x)�

P
i, j:i=j j(aij(x)j=2)þ

P
i hjbi

(q, x)j, and aþ ¼ maxfa, 0g and a2 ¼ maxf2a, 0g denote
the positive and negative parts of a real number.

Next, we consider the jumps with transition rate l(q, x)
and transition measure R((q, x), A). Suppose that at time t
the state is {qh

n ¼ q, jh
n ¼ x}. The probability that a jump

will occur on [t, tþ d) conditioned on the past data can be
approximated by

P[(q, x) jumps on [t, t þ d)jq(s), x(s), w(s), s � t]

¼ l(q, x)dþ o(d)

The ith jump of the approximating process is denoted by
z((q, x), ri) where ri are independent random variables with
distribution �R ¼ {r: z((q, x), ri) [ A} ¼ R((q, x), A) with
compact support P. Let zh be a bounded measurable
function such that jzh((q, x), r)� z((q, x), r)j ! 0 as h! 0
uniformly in x for each r and which satisfies zh((q, x), r) [ �S

h
.

If x [ Sh
q , then with probability ph

jump(q, x) ¼ l(q, x)
Dth(q, x)þ o(Dth(q, x)) there is a jump and the next
state is (qh

nþ1, jh
nþ1) ¼ zh((q, x), ri) and with probability

1� ph
jump(q, x) the next state is determined by the diffusion

probabilities ph
D, thus the transition probabilities are given by

ph((q, x), (q0, x0)) ¼ (1� ph
jump(q, x))ph

D((q, x), (q0, x0))

þ ph
jump(q, x) �R{r: zh((q, x), r) ¼ (q0, x0 � x)} (7)

For the points x [ @Sh
q in the boundary, the next state is

determined by zh((q, x), ri) with probability 1 and the
transition probabilities are given by

ph((q, x), (q0, x0)) ¼ �R{r: zh((q, x), r) ¼ (q0, x0 � x)} (8)

Let �T
h
¼ �S

h
> �T and �U

h
¼ �S

h
> �U denote the discretised

target and unsafe sets respectively. We denote by ni the times
of the jumps between modes and nh the stopping time
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representing that (qh
n, jh

n) [ �T
h

< �U
h
, then the value function

V can be approximated by

V h(s) ¼ Es

Xnh

n¼0

c(qh
n, jh

n)I(n¼ni)

" #

The function V h can be computed using a value iteration
algorithm using value iteration assuming appropriate initial
conditions, and it converges to the value function V of the
SHS as h! 0. The proof of the convergence can be found in [9].

Analysis of the computational complexity of value iteration
algorithms is usually based on the contraction property of the
iteration operator. The iteration operator used for verification
of SHS corresponds to an undiscounted criterion and showing
that it is a contraction mapping is more involved. We have
proved that the iteration operator restricted to an appropriate
set is a contraction mapping with respect to some weighted
infinity norm and the polynomial-time complexity of the
algorithm [9]. Reachability analysis of SHSs is polynomial
on the number of states of the approximating Markov
process, however, this number grows exponentially with the
dimension of the continuous state space. Therefore
application of the approach is limited to low-dimensional
systems. Although scalability is a limiting factor, using
parallel methods the approach is feasible for realistic systems
as shown for the SCD process in the next section.

5 Experimental results
In this section, we present the implementation details and the
results of the verification of the sugar cataract models. We
also describe performance characteristics of the system at
various resolutions of the state space.

5.1 Parallel implementation

The SCD1, SCD2 and SCD3 models are implemented using
the constants presented in Table 2. The resolutions are
presented in Table 3. In order to apply the approach
described in this paper, we under-approximate each discrete

Table 3 Chemical species resolution scaling for experiments
(mM)

Reactant Resolution scaling ci micromolar

NADH 1.0

E 2 NADH 1.0

NADþ 1.0

E 2 NADþ 1.0

SDH (E) 0.1

fructose (F) 25.0

sorbitol (S) 25.0
The Institution of Engineering and Technology 2009
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region X q by X̃q by considering a smooth boundary @X̃q.
The discrete approximations must be created using the finest
resolution possible to ensure an accurate result, but
increasing the fineness of the resolution causes a significant
increase in the number of states, so a balance of accuracy and
efficiency must be found. Using scaling parameters similar
to the resolution of measurement equipment resulted in
reasonable results for the SCD system. Table 3 displays the
resolution scaling parameters for the SCD system, and these
resolutions result in an MC with �550 million states.

Storing the values for the value iteration algorithm requires
several gigabytes of memory, so we have developed a parallel
value iteration implementation to improve the scalability of
the algorithm. Parallel algorithms traditionally cannot take
full advantage of the increased computing capabilities because
slow intra-computer communication delays computation.
Some algorithms require more communication than others,
and increased communication further decreases efficiency
of the algorithm. Therefore algorithms that minimise
communication maximise parallel algorithm performance.

Dynamic programming algorithms are very natural to
parallelise because of the repetitive nature of the algorithms
and the minimal communication required; however, care
must be taken to ensure that the algorithm will converge to
the correct solution in a parallel implementation. The value
iteration algorithm is guaranteed to converge in a parallel
implementation as long as communication between the
partitions happens periodically [47]. The hybrid switches in
our system affect the structure of the state space, but do not
change the overall convergence results. The way the state
space is partitioned directly affects the efficiency of the
parallel method, so the partitioning must be chosen
carefully to minimise the communication required.

To partition the problem for multiple processors, we divide
the state space into 32 equally sized partitions and assign each
partition to a processor. Each partition is then executed
independently and the values at the boundaries that are
shared with other partitions are periodically updated to
guarantee convergence to the solution. The processors
routinely calculate the collective amount of change to
determine when value iteration can be completed. We use
a parallel communication formalism message passing
interface (MPI) to execute the communication between
processors to ensure efficient communication.

To divide the state space in an effort to minimise
communication required, we choose five dimensions and
split each into two parts. The first split defines two
partitions and one communication boundary, the second
defines a total of four partitions and four communication
boundaries, the third defines a total of 8 partitions and 12
communication planes, the fourth defines a total of 16
partitions and 32 communication hyperplanes and the fifth
defines all 32 partitions and 80 communication hyperplanes.
The 32 processors are assigned to the 32 partitions to
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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minimise the required communication to minimise the
overhead required by the technique. More processors could
be used to further enhance the scalability of this technique,
but we found that 32 was an adequate number for this size
of a problem.

The Advanced Computing Center for Research and
Education (ACCRE) at Vanderbilt University provides the
parallel computing resources for our experiments
(www.accre.vanderbilt.edu). The computers form a cluster of
348 JS20 IBM PowerPC nodes running at 2.2 GHz with
1.4 GB of RAM per machine. We use Cþþ as the
implementation language because ACCRE supports MPI
compilers for Cþþ. We use the MPI standard for
communication between processors because it provides an
efficient protocol for message passing middleware for
distributed memory parallel computers. Currently, the
bottlenecks of this approach are the memory size and speed,
but as computing hardware improves, the size of systems that
our method can efficiently handle will increase as well.

To visualise our results, we plot projections of the data
for different concentrations of the chemicals involved.
Specifically, these projections show the safety probability
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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for the entire range of sorbitol and fructose levels for
certain values of the five other variables. Multiple selections
of the five other variables can be chosen to show a more
comprehensive view of the data.

5.2 Safety and reachability analysis

Figs. 7 and 8 show projections of the value function for the
safety and reachability results where x1 ¼ 1.0, x2 ¼ 1.0,
x3 ¼ 1.0, x4 ¼ 1.0 and x5 ¼ 0.1. These figures show the
safety or reachability analysis of the non-medicated SCD1
model (Fig. 7a), medicated SCD2 model (Fig. 7b) and
medicated with delay SCD3 (Fig. 7c) model.

The differences between the safety verification results are
shown in Fig. 9 to highlight the differences between the
analysis of the three models. Fig. 9a shows the difference
between the SCD1 and SCD2 models. The difference
between the value functions for these models is negligible
for fructose values under 250 uM corresponding to the fact
that the drug is not administered below 250 uM. Fig. 9b
displays the difference that including the drug absorption
and metabolisation creates. The difference between SCD2
and SCD3 is especially large for situations where the
concentrations of fructose and sorbitol are low.
Figure 7 Safety results for SCD1, SCD2 and SCD3

a SCD1
b SCD2
c SCD3
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Figure 8 Reachability results for SCD1, SCD2 and SCD3

a SCD1
b SCD2
c SCD3

Figure 9 Differences between the safety results for the SCD models

a SCD1 and SCD2
b SCD2 and SCD3
Fig. 10 displays the differences between the calculated
reachability values for SCD1, SCD2 (Fig. 10a) and SCD2,
SCD3 (Fig. 10b). Figs. 10a and 10b show that the differences
between the models are greater closer to the target set than
the unsafe set. This implies that the effects of the drug are
most influential to patients who are less likely to develop
cataracts. This is most likely caused by the side effects of the
drug that can adversely affect the patients fructose levels.
The Institution of Engineering and Technology 2009
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Analysing the data generated by these experiments could
possibly help predict sugar cataracts by demonstrating where
the safest and most unsafe concentrations exist. Examining the
differences between the various medication models could also
possibly help further the understanding of how drugs are
converted from prodrugs and metabolised. It could also give
guidance for choosing the most effective or economical
treatment to avoid cataract development. Furthermore, analysis
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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Figure 10 Differences between the reachability results for the SCD models

a SCD1 and SCD2
b SCD2 and SCD3
can possibly guide doctors to better understand and predict why
some drugs are more effective than others in different situations
and better predict side effects for individual patients.

If the original dynamics of the model are changed by the
user, the MDP must be regenerated with the new
dynamics and the value iteration must be rerun. The
computed value function from the original model can be
used as the initial value function for the altered model to
significantly improve the efficiency of the value iteration
convergence. The amount of the improvement will depend
on the dynamics of the system and the changes that are
made. The difference between the original model and the
new model can be easily quantified using statistical
methods by comparing the original value function and the
newly computed result.

5.3 Scalability analysis

In this section, we present the effect of the resolution choice
on the results and performance of the algorithm. The base
resolution for each variable is presented in Table 3 and is
the finest resolution that we consider.
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 137–154
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Our results show that the efficiency of the parallel
implementation increases as the number of states increases
demonstrating the polynomial complexity of the algorithm
with respect to the number of states. We divided the states
as evenly as possible among the processors in a regular
configuration to minimise the required communication
between processors. As the number of states grows, the
ratio of communication time to computation time
decreases. This can be seen in Fig. 11c where smaller the
resolution (h) parameter, the lower the ratio.

The bottleneck of our approach is memory, not processing
speed. Each of the 32 processors that we used had 1.4 GB of
ram on them and we have been able to analyse an MDP of up
to 1.3 billion states. For every GB of memory used,
approximately 28 million states can be analysed. Therefore
larger systems could easily be analysed by increasing the
amount of memory on the machines performing the analysis.

We have been able to analyse systems of up to eight
continuous dimensions using 32 processors. To analyse
systems with more continuous dimensions, more processors
Figure 11 Performance results

a Turn around times
b Two-norm
c Communication against computation
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must be used. For every unit increase in the number of
dimensions, the number of processors used must double.
While this is an exponential requirement, trends in high
performance computing have been tending towards lower
cost, more powerful machines.

We have run tests using different resolutions to demonstrate
the scalability of our approach. The resolution parameter h
describes the scaling in comparison to the base resolution in
Table 3, and it is multiplied by ci to give the final resolution
in each dimension. The turn-around-time of the verification
algorithm at various resolutions can be seen in Fig. 11a.

5.4 Error analysis

Characterisation of the error in finite difference methods is
useful for indicating the accuracy of the approximation.
Local error is introduced by inaccuracies of the individual
grid approximation and decreases as the order of the
approximation method increases. Our analysis method uses
a second-order method with a uniform grid for accuracy
and paralleliseability, and the local truncation error is
O(h2). Exact characterisation of the global error is very
hard because of the boundary conditions as well as the
specific problem constraints of the system. However,
practical error analysis can be used to give an indication of
the error of an approximation, which is useful for
determining an appropriate resolution.

In practical error analysis, error estimates can be obtained
by comparing fine grid approximations with coarser grid
approximations to give an indication of the error of the
approximation. An estimate for the order of accuracy for
the approximation can be obtained by comparing the
results of three different resolutions. Because a fine grid is
used instead of the exact solution, the computed error will
decrease faster than the actual error as the compared step
sizes decrease; however, the characterisation of the error is
still a good indicator of the actual error.

We assume that a solution is a pth order approximation, that
is, the error is decreasing as O(hp). We can obtain an estimate of
p using the solutions at three different resolutions. If we assume
that we have solutions on grids with resolution parameters h, h/
2 and h/4, then we can compare the coarser solutions to
determine an estimate of the order. Let h0 ¼ h/4, the
approximate error for 4h0 is E(h) ¼ E(h)� E(h0) ’ (4p

�

1)Ch0p. Similarly for h=2 ¼ 2h0, E(h=2) ’ (2p
� 1) Ch0p. The

ratio of error is R(h) ¼ (E(h)=E(h=2)) ’ 2p
þ 1, therefore an

estimate for the order p is p ¼ log2 (R(h)� 1).

Coarse grid approximations do not always generate
overlapping grids, so interpolation methods must be used to
facilitate error analysis for these systems. We extend the
notion of linear interpolation to higher dimensions to
compare the error in the value functions at different
resolutions. Fig. 12 shows a two-dimensional example of
bilinear interpolation. The coarse value function in two
2
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dimensions at x1 ¼ j, x2 ¼ k is V j,k. The interpolated value is
given by

V
jþu1,kþu2

i ¼ (1� u1)(1� u2)V j,k
þ (u1)(1� u2)V jþh,k

þ (1� u1)(u2)V j,kþh
þ (u1)(u2)V jþh,kþh

This method of interpolation can be extended to any dimension
by multiplying ul values in each dimension l to the
corresponding value function V j,...,l,...,n and adding all possible
combinations thereof.

We calculate the error for our system using the two-norm
difference (DV) between the interpolated value function
Vint and the finer approximation Vf, DV ¼ (1=N )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i (Vf � Vint)
2

q
where N is the number of states. The

results of this analysis are shown in Fig. 11b. Using the
ratios of the three finest resolutions, we have computed
p ¼ 2.4 as an estimate for our order of accuracy. This is a
reasonable estimate for our system, but is an overestimate of
the order because the finest grid is not an exact solution.

It can be seen that the two-norm difference decreases
significantly as smaller step sizes are used, but the reduction
in error becomes less and less as the stepsize shrinks. Since
smaller stepsizes significantly increase computational cost,
trade-offs in accuracy and efficiency must be carefully
considered. As computational resources increase in speed and
capacity, larger SHS models will be able to be analysed with
these methods with a higher degree of accuracy and speed.

6 Conclusions
Biochemical system modelling and analysis are important but
challenging tasks, which hold promise to unlock secrets
of complicated biochemical systems. SHS are an ideal
modelling paradigm for biochemical systems because they
are scalable and they incorporate probabilistic dynamics
into hybrid systems to capture the inherent stochastic
nature of the biochemical systems. The SCD problem is an
excellent example of a system that is modelled effectively
using the presented modelling methods. Our simulation
algorithms also demonstrate the accuracy of the SHS models.

While the computational complexity of the proposed
verification method results in a somewhat expensive analysis,

Figure 12 Two-dimensional value function interpolation
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the results of the analysis are exhaustive, and the approach is
virtually automated. Improvements in parallel approaches
and computational hardware are steadily increasing the
ability of this technique to handle larger and larger systems.
While the curse of dimensionality limits the ultimate
scalability of this method, it is useful for many realistic
systems, and it provides a comprehensive analysis.
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