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Modeling and simulation of biochemical systems are important tasks because they can
provide insights into complicated systems where traditional experimentation is expensive
or impossible. Stochastic Hybrid Systems (SHS) are an ideal modeling paradigm for bio-
chemical systems because they combine continuous and discrete dynamics in a stochastic
framework. In this work we develop an advanced simulation method for SHS that explicitly
considers switching and reflective boundaries and uses probabilistic crossing detection
methods to improve accuracy. We also develop an adaptive time stepping algorithm for
SHS to improve efficiency. We present case studies for a water/electrolyte balance system
in humans and a biodiesel production model. Simulation results are presented to demon-
strate the accuracy and efficiency of the improved simulation techniques.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Modeling and analysis of biochemical systems are important tasks because they can provide insights into complicated
systems where traditional experimentation is difficult or costly. Further, accurately simulating the individual interactions
between the components of a biochemical system can shed light on the function of the entire system. Biological systems
are often mixtures of continuous and discrete processes, so modeling and analysis methods ideally should be able to capture
both types of dynamics. Biochemical processes are also inherently probabilistic because of the uncertainty of molecular mo-
tion, so models that incorporate stochasticity can provide new, more realistic insight into the dynamics of the system.

Stochastic Hybrid Systems (SHS) provide an ideal, formal framework for modeling biochemical systems because they can
be used to capture complex continuous, discrete, and stochastic dynamics [1]. SHS models can be used to analyze and design
complex systems that operate in the presence of uncertainty and variability because they incorporate complex dynamics,
uncertainty, and multiple modes of operations. However, simulation of SHS models is a challenging task due to the complex-
ities of the dynamics.

Simulation is a powerful analysis technique, but accurate simulation methods must be utilized to ensure reliable results
are generated. Trajectories are tested for boundary crossings at each time step, and when a crossing is detected, the step is
reversed and the discrete transition is fired. Simulation of systems with both discrete and continuous dynamics is especially
challenging because of the error introduced near switching and reflecting boundaries.

Efficient simulation of stochastic dynamical systems is challenging because the stochastic dynamics require more com-
putational effort to compute accurate approximations than deterministic simulation methods. Further, adaptive time step-
ping methods for stochastic dynamics are not as efficient as deterministic methods and much more difficult to compute
efficiently for high-dimensional systems.
. All rights reserved.
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In this work we develop an advanced simulation technique for SHS that employs probabilistic boundary crossing detec-
tion methods for absorbing and reflecting boundaries utilizing probabilistic methods. We present a fixed time stepping
method as well as an adaptive time stepping method for SHS. The methods we present improve the accuracy and efficiency
of traditional SHS simulation methods. We demonstrate the improvements using SHS case studies including a small water/
electrolyte balance in humans and a large, complex biodiesel production system. We developed SHS models for both bio-
chemical systems to demonstrate our improved simulation methods when encountering discrete switching and reflecting
boundaries. We present the models in this work as well as simulation results to highlight our improved simulation methods.

The rest of this paper is organized as follows: Section 2 describes the related work, Section 3 describes Stochastic Hybrid
Systems, Section 4 covers fixed step simulation of SHS including the absorbing and reflecting boundary crossing detection
techniques, Section 5 presents adaptive time stepping for SHS, Section 6 presents the case study of the water balance system
and experimental simulation results, Section 7 presents the biodiesel production model and experimental simulation results,
and Section 8 concludes the work.
2. Related work

2.1. Biochemical modeling

A recently renewed interest in the field of biochemical system modeling has increased the quality and diversity of the
models created. Biological protein regulatory networks have been modeled with hybrid systems using linear differential
equations to describe the changes in protein concentrations and discrete switches to activate or deactivate the continuous
dynamics based on protein thresholds [2]. Biomolecular network modeling using hybrid systems is accomplished by using
differential equations to model feedback mechanisms and discrete switches to model changes in the underlying dynamics
[3]. A modeling technique that uses polynomial SHS to construct models for chemical reactions is presented in [4]. A SHS
model of a genetic regulatory network is compared to a deterministic model in [5]. Switching thresholds for piecewise-affine
models of genetic regulatory networks are studied in [6]. SHS models of biochemical systems using reaction rate analysis
have been developed and simulated in [7]. An early stochastic model of the water/electrolyte balance system is presented
in [8], and a non-stochastic model with experimental results is presented in [9].

2.2. Simulation of SHS

Simulation methods for SHS have been developed for the modeling language Charon, but the focus is on concurrency, and
the behavior close to the boundaries is not studied [10]. A simulation engine for SHS is also implemented in Matlab using
Simulink and Stateflow [11].

A technique for accurately detecting absorbing boundary crossing has been developed for one-dimensional systems [12],
and extensions have been proposed that scale to higher-dimensional systems [13]. The boundary crossing detection algo-
rithm presented in [14] uses analysis of moments to improve the accuracy of the approximation. Methods for approximating
reflecting boundaries have also been studied previously [15], and an improved technique for approximating reflecting
boundaries is presented in [16].

Adaptive time stepping has been used with great success for deterministic systems to improve accuracy and efficiency of
simulators. Adaptive time stepping for stochastic differential equations (SDEs) is more difficult because the Brownian motion
must be preserved, and high order methods must be used to guarantee the convergence of the solution [17]. Adaptive time
stepping implementations for SDEs typically utilize halving and doubling of the time step based on approximations of the
approximation error in the drift or diffusion terms [18]. An adaptive, parallel simulation method for stochastic systems is
presented in [19], but adaptive simulation methods for SHS, to our knowledge, have not been presented.

Improved absorbing boundary crossing detection methods for SHS are presented in [20], and in this work we extend the
previous work by adding an improved probabilistic reflecting boundary detection method. We also present an implementa-
tion of adaptive time stepping for SHS that incorporates methods for SDEs in a hybrid state space in this work.
3. Stochastic hybrid systems

We adopt the SHS model presented in [1]. To establish the notation, we let Q be a set of discrete states. For each q 2 Q, we
consider the Euclidean space RdðqÞ with dimension d(q) and we define an invariant as an open set Xq # RdðqÞ. The hybrid state
space is denoted as S =

S
q2Q{q} � Xq. Let S ¼ S [ @S and @S =

S
q2Q{q} � oXq denote the completion and the boundary of S,

respectively. The Borel r-field in S is denoted as BðSÞ.
Consider an Rp-valued Wiener process w(t) and a sequence of stopping times {t0 = 0, t1, t2, . . .}. Let the state at time ti be

s(ti) = (q(ti), x(ti)) with xðtiÞ 2 XqðtiÞ. While the continuous state stays in XqðtiÞ, x(t) evolves according to the stochastic differ-
ential equation (SDE)
dx ¼ bðq; xÞdt þ rðq; xÞdw ð1Þ
where the discrete state q(t) = q(ti) remains constant. A sample path of the stochastic process is denoted by xt(x), t > ti, x 2X.
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Fig. 1. Stochastic hybrid system.
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The next stopping time ti+1 represents the time when the system transitions to a new discrete state. The discrete transi-
tion occurs either because the continuous state x exits the invariant XqðtiÞ of the discrete state q(ti) (guarded transition) or
based on an exponential distribution with non-negative transition rate function k : S! Rþ (probabilistic transition). At time
ti+1 the system will transition to a new discrete state and the continuous state may jump according to the transition measure
R : S�BðSÞ ! ½0;1�. The evolution of the system is then governed by the SDE (1) with q(t) = q(ti+1) until the next stopping
time. If ti+1 =1, the system continues to evolve according to (1) with q(t) = q(ti).

Fig. 1 shows a generic SHS model with two states and two transitions (one probabilistic and one guarded). The continuous
dynamics of each state are defined by the associated stochastic differential equations. The probabilistic transition fires at the
firing rate k, and the guarded transition fires when x hits the boundary x 2 @Xq2 . The logical condition x 2 @Xq2 is often re-
ferred to as the guard of the transition. Upon firing of a transition, the state resets according to the map R((q,x), A). The fol-
lowing assumptions are imposed on the model. The functions b(q,x) and r(q,x) are bounded and Lipschitz continuous in x for
every q, and thus the SDE (1) has a unique solution for every q.
4. Fixed step SHS simulation

4.1. Fixed time step simulation

Simulation of SHS requires the combination of simulation methods for SDEs, detection of switching boundaries, approx-
imation of reflecting boundaries, and detection of probabilistic transitions. At each time step, the values of the continuous
variables must be updated, boundaries must be tested for crossings, and probabilistic transitions must be tested for firings.
We present the individual methods and we describe their combination to create SHS simulation algorithms.

4.1.1. Numerical integration of SDEs
Simulation of SDEs can be performed using Taylor schemes of various orders. The simplest Taylor approximation scheme

is the Euler–Maruyama (EM) method that is a first-order approximation. The kth component of the EM scheme is given by
Xk
nþ1 ¼ Xk

n þ bkDt þ
Xm

j¼1

rk;jDWj
for k ¼ 1;2; . . . ; d where DWj is the normally-distributed increment of the jth component of the d-dimensional Wiener pro-
cess W assuming a d-dimensional drift coefficient b and a d �m diffusion coefficient r.

Order of convergence is used to formalize the notion of accuracy. The order of convergence quantifies the quality of the
approximation when considering simulation of stochastic systems. An approximation XDt(T) at time T with step size Dt con-
verges with order c strongly to the actual trajectory x(T) if there exists c > 0 such that E(jx(T) � XDt(T)j) 6 cDtc. XDt(T) con-
verges with order c weakly to x(T) if there exists c > 0 such that E(jf(x(T)) � f(XDt(T))j) 6 cDtc for a given class of
measurable functions f [21]. Strong convergence implies that the trajectory is a possible trajectory of the system, and weak
convergence implies that the computed trajectory only preserves the moments of the actual trajectory. The EM method is
simple to implement, but achieves a strong convergence of c = 0.5 and weak convergence c = 1.0, so small time steps must
be used to generate accurate approximations.

The Milstein Method (MM) is a second-order Taylor scheme. The higher-order terms require additional computation;
however, the approximation maintains acceptable efficiency for most systems. The kth component of the MM scheme is de-
scribed by
Xk
nþ1 ¼ Xk

n þ bkDt þ
Xm

j¼1

rk;jDWj þ
Xm

j1 ;j2¼1

Lj1rk;j2 Iðj1 ;j2Þ
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where
Lj ¼
Xd

k¼1

rk;j d

dxk
and Iðj1 ;j2Þ ¼

Z snþ1

sn

Z s1

sn

dwj1
s2

dwj2
s

For the cases where j1 = j2, the multiple stochastic (Stratonovich) integral can be calculated by
Iðj1 ;j1Þ ¼
1
2
ððDWj1 Þ2 � DtÞ
Iðj1 ;j2Þ cannot, in general, be calculated using only DWj values. To approximate Iðj1 ;j2Þ, multiple stochastic integrals are used in
the following equation assuming j1 – j2.
Ip
ðj1 ;j2Þ

¼ Dt
1
2

nj1 nj2 þ
ffiffiffiffiffi
pp

p
ðlj1 ;p

nj2 � lj2 ;p
nj1 Þ

� �
þ Dt

2p
Xp

r¼1

1
r

fj1 ;r

ffiffiffi
2
p

nj2 þ gj2 ;r

� �
� fj2 ;r

ffiffiffi
2
p

nj1 þ gj1 ;r

� �� �
where
pp ¼
1

12
� 1

2p2

Xp

r¼1

1
r2

nj ¼
1ffiffiffiffiffiffi
Dt
p DWj
and lj,p, gj,r, and fj,r are independent Gaussian random variables with mean 0 and standard deviation 1 for j ¼ 1; . . . ;m and
r ¼ 1; . . . ; p. The accuracy of the approximation Ip

ðj1 ;j2Þ
of Iðj1 ;j2Þ can be improved by using larger values of p. To obtain a strong

convergence of order c ¼ 1:0; p ¼ pðDtÞP K
Dt must be chosen where K is some positive constant [21].

Taylor schemes for solving SDEs can have strong order of convergence of c = 0.5 to c = 3.0 and weak order of convergence
of c = 1.0 to c = 6.0 depending on the number of approximating terms [21]. The computation of higher-order terms requires
many more operations and can be prohibitively complicated and expensive; therefore, a trade off must be reached to achieve
the appropriate accuracy and efficiency.

4.1.2. Absorbing boundaries
During the execution of a SHS, the process can hit a switching boundary defined by the invariants. At a switching bound-

ary the continuous process is halted and re-started in a new state after executing any transition resets. Because the process is
stopped when a boundary is encountered, switching boundaries can be treated as absorbing boundaries [16]. It is important
to accurately estimate the time and location that the process is absorbed to minimize the error introduced into the
approximation.

The easiest way to detect an absorbing boundary is to check the state against the invariants at each step of the approx-
imation. Let us assume the state at time t is X(t). If X(t) 2 Xq, but X(t + Dt) R Xq, then the process is rolled back to time t and re-
started in the new state. This method has a strong order of convergence of c = 0.5 [14].

An improved method for absorbing boundary crossing detection based on stochastic sampling was developed in [16]. The
approach can be used with boundaries that are hyperplanes or sufficiently smooth. The biochemical models we consider
have boundaries that are hyperplanes, so this approach is valid for these systems. The probability that the state trajectory
has hit the boundary between t and t + Dt is
PðhitÞ ¼ exp
�2ðn � ðXt � Xab;Q tÞÞðn � ðXtþDt � Xab;Q tÞÞ

n � ðrðXt;QtÞr�ðXt;QtÞnÞDt

� �
where the switching boundaries are hyperplanes @Xq ¼ fx 2 RdðqÞ : n:ðx� XabÞ ¼ 0g;n is the unit vector normal to the bound-
ary @Xq;Xab 2 Rn is the position of the absorbing boundary, Xt is the computed continuous state at time t, and Qt is the dis-
crete state at time t. This improved method achieves a weak order of c = 1.0 assuming that the boundary is sufficiently
smooth [16].

4.1.3. Reflecting boundaries
Invariants can define reflective boundaries in addition to switching boundaries. Reflective boundaries are those where the

process is reflected obliquely when it encounters the boundary [16]. For example, all biochemical systems are limited to non-
negative concentrations of any chemicals, or some biochemical processes also have saturation limits that impose upper lim-
its on concentrations. In both cases when the process reaches the boundary, it is reflected to mimic the behavior of the real
system.

The traditional way to handle reflective boundaries is to detect the boundary crossing and reset the state to a position
within the valid state space as shown in Fig. 2 [16]. The most common way to reset the state is to place it inside the state
space the same distance that it covered after it crossed the boundary. This type of reflection guarantees that the invariants
are always satisfied, but it is not always accurate for real systems. For example, biochemical systems require non-negative
chemical concentrations, so if the simulation is reflected using the traditional method, the number of atoms involved in the



Fig. 2. Boundary reflection problem.
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system can be changed significantly invalidating conservation of mass properties. While the use of SDEs inherently does not
preserve conservation of mass in simulation (due to the noise terms), improved reflection techniques exist that better pre-
serve conservation of mass by more accurately approximating the reflection.

We formally define the boundary reflection problem. Let us assume a system has an invariant Xq with a reflective bound-
ary, and the state at time t is X(t). If X(t) 2 Xq, but X(t + Dt) is computed to be outside of Xq, then the process is reflected in the
direction normal to the boundary X(t + Dt) � n = X(t) � n, where n is the unit vector normal to the boundary. The traditional
method of boundary reflection has a weak order of convergence of c = 0.5 [16].

The improved method described in [16] defines a new diffusion process that adds the effect of the reflection to the ori-
ginal SDE to provide an exact simulation of obliquely-reflected processes:
dx ¼ bðq; xÞdt þ rðq; xÞdwþ nðq; xÞdk
where n(q,x) is a unit vector normal the boundary at state (q,x), k ¼
R t

0 1X2@D dk and @D is the reflective boundary.
The approximation of the process using the EM method for simplicity is calculated using:
XtþDt ¼ Xt þ bDt þ rDW þ nDk
where DW is a normally-distributed pseudo-random number and Dk = kt � kt+Dt. Approximating kt is achieved using the
technique described in [16]:
kt ¼max 0; ztð Þ � n

zt ¼ Xt � Xrb þ
1
2

rW þ bt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj j2V þ rW þ btð Þ2

q� �
where V = e(1/2t) is an exponentially-distributed random variable independent of W and Xrb is the position of the reflective
boundary. This equation is extended to an order 1.0 method by including second-order term from the Milstein Method. It is
derived from the solution to the Skorohod problem and results in a weak order 1.0 approximation of the reflecting boundary
[16]. While simulation of conservation of mass is not possible for any technique based on SDEs, the improved accuracy of this
technique ensures that the approximation closely follows the behavior of the real system, and therefore, more closely
approximates the conservation of mass properties.

4.1.4. Probabilistic transitions
Firing of the probabilistic transitions (according to the transition rate k) can be handled by the technique described in

[10]. A graphical representation of this algorithm can be seen in Fig. 3. First, a new process Z must be defined
ZðtÞ ¼ �U þ e�
R tlt

t
kðxðsÞÞds
Fig. 3. Probabilistic transition firing method.
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where U 2 [0,1] is a uniformly-distributed random number and tlt is the time of the last probabilistic transition. A sample is
drawn from the uniform distribution and Z is tested at each time step. When Z crosses 0, the transition is fired.

4.1.5. SHS simulation algorithms
Our first algorithm is the Hybrid Euler–Maruyama HEM method, which we will use as a baseline algorithm as presented in

[22]. We use the Euler–Maruyama method for numerically integrating the SDEs, and we use the traditional (non-stochastic)
methods for detecting boundaries. Discrete transitions are incorporated into the EM approximations by analyzing the state
between steps of updating the continuous dynamics. If a guard condition on a transition is satisfied, then the transition is
fired and resets are executed. Once the state is updated, the EM algorithm continues in the new state. Probabilistic transition
firing is determined for HEM using the technique described in Section 4.1.4. We draw a sample from a uniform distribution
and test the exponential decay at various times to determine the jump time for each probabilistic transition. When the expo-
nential decay is greater than the random value, the transition is fired. The pseudocode for a step of HEM is given below where
Dt is the step size, guard is the boolean guard on a single discrete transition, Xrb is the location of the reflective boundary, and
ttl is the time the last probabilistic transition fired. Multiple guarded or probabilistic transitions may be included by adding
multiple tests.

Algorithm 4.1. HEMSTEP(Xt)
Xt+Dt = Xt + bDt + rDW
if guard == true

then FireGuardedTransition
if Xt+Dt < Xrb

then ReflectBoundary
if U1 = rand(0,1) < exp(�k(t � ttl))

then FireProbabilisticTransition
t = t + Dt
return (Xt)

Our second algorithm HMM incorporates the MM, stochastic absorbing, and reflective boundary simulation methods to
create a new simulation algorithm. To include the improved reflective boundary method we store the previous Dk value
and calculate the new Dk at each step. If the trajectory is close to a reflecting boundary, we add Dk to the MM computation.
Because there may be multiple absorbing boundaries that could be hit at the same time, at each time step we calculate the
probability of hitting all nearby boundaries. We then select the boundary with the highest hitting probability and compare
the probability to a uniformly-distributed number U1. When U1 < max(P), then we consider the boundary to be hit, and we
execute the transition resets and restart the process in the new state. The pseudocode for a step of HMM is as follows where
xab,n is the location of absorbing boundary n, n is the direction normal to the associated reflected or absorbing boundary, and
V is an exponentially-distributed random variable independent of U1.

Algorithm 4.2. HMMSTEP(Xt)

ktþDt ¼ Xt � Xrb þ 1
2 rW þ bðt þ DtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrj2V þ ðrW þ bðt þ DtÞÞ2

q� �

Dk = max(kt+Dt,0) � n � prevDk
XtþDt ¼ Xt þ bDt þ rDW þ

Pm
j1 ;j2¼1Lj1rk;j2 Iðj1 ;j2Þ þ nðDkÞ

GuardedProb ¼ max exp �2ðn � ðXt�Xab;nÞÞðn � ðXtþDt�Xab;nÞÞ
n:ðrr�ðXt ÞnÞDt

� �
; n

� �

if U1 = rand(0,1) < GuardedProb
then FireGuardedTransition

if U2 = rand(0,1) < exp(�k(t � ttl))
then FireProbabilisticTransition

t = t + Dt
return (Xt)

Error is introduced into the calculated SHS trajectory in several different ways. Approximation of the SDE introduces high-
er-order errors that are not calculated due to computational inefficiency. Error due to the use of pseudo-random numbers is
typically not a concern for smaller simulations, but large simulations must use pseudo-random generators that do not repeat
as often as the efficient generators to avoid this type of error. Finally, step size inherently introduces error in the SDE and
boundary calculations as described earlier by the order of convergence c.

The approximations using the EM or MM method, boundary methods, and probabilistic transitions converge to the actual
solution individually as the step size is decreased to zero, so their combination also converges to the correct solution. By
combining methods with higher-order convergence, we reduce approximation error more quickly than the lower order
methods thereby improving efficiency and accuracy. The traditional absorbing and reflecting boundary algorithms have a
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weak order of convergence of c = 0.5, while the improved methods both have a weak order of convergence of c = 1.0 [16].
Therefore the HEM algorithm has a strong order of convergence of c = 0.5, and the HMM algorithm has a strong order of con-
vergence of c = 1.0.

Accurate simulation of the trajectory near intersections of boundaries is a difficult problem, and must be handled care-
fully to minimize error. When the trajectory is in close proximity to multiple reflecting or absorbing boundaries, our algo-
rithm considers the boundary with the highest hitting probability at each time step.
5. Adaptive time stepping for SHS

Error in a simulation method due to the step size can be decreased by decreasing the step size, but this comes at the cost
of efficiency. Dynamically adjusting the time step of the simulation has been shown to increase the accuracy and efficiency of
the approximation by allowing the step size to adjust to compensate for variable step size error. However, adaptive time
stepping for stochastic systems is difficult because of the challenge of error approximation in the presence of stochastic
dynamics [18]. Adaptive time stepping for SHS is further complicated by the discrete discontinuities, so additional care must
be taken when a simulation trajectory approaches a boundary.

5.1. Background

Fixed step integration methods are easy to implement and are effective for generating approximations to differential
equations, but they can be unnecessarily inefficient. Adaptive time stepping can improve efficiency by adjusting the time
step of the approximation dynamically based on the error of the approximation.

Exact error cannot be determined for general systems, so error estimations must be used. Error estimation methods aim
to determine the amount of error generated in a time step by examining the dynamics of the simulation. If the estimated
error is too large, then the given time step should be decreased. Conversely, if the error is sufficiently small, the step size
can be increased because the error introduced will be relatively small.

Accurate approximations of the error due to the step size must be made to ensure the step size is adjusted appropriately.
For ordinary differential equations, error approximations and step size adjustments are fairly straight forward [18]. However,
adaptive time stepping for SDEs is not as simple for multiple reasons. Not only is error introduced by several sources (that all
must be accurately estimated), but also the Brownian path must be computed accurately when the step size changes to en-
sure randomness is preserved. Therefore, we begin by examining error estimates for SDEs.

5.2. SDE error approximation

Time discretization error for SDEs can be categorized into two types: drift and diffusion error. Neither type of error can be
computed exactly because there are no analytical methods for computing the error of SDEs. However, both types of error can
be estimated separately and decisions about the time step can be made based on the amount of either or both forms of error.

The error introduced by the diffusion term can be estimated by computing higher-order approximation terms. Given a
SDE, we examine the higher-order terms of the Strantonovich–Taylor expansion of the original SDE J10b0r; J01r0b; 1

6 J3
1r0rr,

and 1
6 J3

1r0r0r where J1, J10, and J01 are multiple Strantonovich integrals [18]. Only the last term can be computed efficiently,
so it is the best term to estimate the diffusion-influenced error:
Er ¼ DW3r02r
where W3 is an m-dimensional vector (corresponding to the number of Weiner processes) of cubed Gaussian terms. This
method has been shown to be effective for estimating the diffusion error for systems with one noise dimension (m = 1) in
[18]. The technique was extended to handle multiple multiplicative noise terms (m > 1) in [23] by computing a replacement
for r in the above equation based on a combination of the multiplicative noise terms. Our implementation uses the approach
in [23] for multidimensional Wiener processes.

Error can also be introduced by the drift term, so we must also consider this error in our estimation methods. ODE-like
error computation methods can be used to estimate the drift error using the SDE. Using the O(h2) error terms from the Mil-
stein error expansion, the drift error can be estimated by
Eb ¼ Dt2b0b
This method has been shown to be effective for estimating the drift error previously in [18].

5.3. Adaptive time stepping for SDEs

Before each step of the approximation, the drift and diffusion errors of the approximation are computed (Eb, Er), and the
step is rejected or accepted depending on the amount of either type of error. If the step is rejected because either Eb or Er is
too large, the step size is reduced to decrease the error until both error estimates are sufficiently small. If the two types of
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error are both determined to be smaller than a threshold, the step size can be increased to improve efficiency. Step sizes are
typically halved and doubled in stochastic systems to simplify the computation of the Wiener process [18].

Brownian motion must be appropriately approximated for the variable time steps to ensure bias is not introduced. To
simplify the process, a binary tree structure is used to store the noise values. The Wiener process is sampled at fixed intervals
Dwk = w(k) � w(k � 1) for k = 1, . . . ,N. Intermediate intervals on level j of the tree are calculated if needed by
Dw2k�1;jþ1 ¼ 1

2 Dwk;j þ yk;j;Dw2k;jþ1 ¼ 1
2 Dwk;j � yk;j for j = 1, 2, . . . where yk,j is a normally-distributed random variable with mean

0 and variance 2�j [17].

5.4. Adaptive time stepping for SHS

The dynamics of SHS introduce further complication into the estimation of the error for an approximation method. Signif-
icant error can be introduced for near boundaries as we showed in the previous section, and larger step sizes exacerbate this
error. Traditional error estimation methods for SDEs do not consider boundaries, so large step sizes near boundaries are pos-
sible. Therefore, we must test and prevent large step sizes near reflecting or absorbing boundaries before a step size is accepted.

Error introduced near boundaries can be significantly reduced by shrinking the step size when a trajectory is near a
boundary. Therefore, we test if Xt � Xab < W or Xt � Xrb < W where W is a minimum boundary distance threshold, and we de-
crease the step size to a small, predetermined value Dtmin if either condition is satisfied to ensure the most accurate bound-
ary approximation. When the conditions are not satisfied, we allow the variable step algorithm to adjust the step size
according to the traditional SDE adaptive algorithm. This method ensures that the adaptive time stepping methods do
not increase the error from the boundary approximations in SHS.

5.5. Adaptive time stepping simulation algorithm

Adaptive time stepping extends the fixed step method by computing error estimates and adjusting the step size before a
step is computed. We introduce a new algorithm ATHMM that incorporates adaptive time stepping into the HMM algorithm
shown below. The algorithm tests both error estimates Eb and Er, and if either is above an upper threshold, the step size is cut
in half. If either error estimate is below a lower threshold, the step size is doubled. If the error is between the two thresholds,
then the step size is not adjusted. To avoid large step sizes near boundaries, the algorithm tests the distance to any reflecting
or absorbing boundaries and changes the step size to Dtmin if it is sufficiently close to a boundary.

Algorithm 5.1. ATHMMSTEP(Xt)

while Dt2b0bþ J3
1r02r > UpperThreshold

do Dt ¼ Dt
2

while Dt2b0bþ J3
1r02r < LowerThreshold

do Dt = 2Dt
if jXt � Xab,nj < 1 or jXt � Xrbj < 1

then Dt = Dtmin

ktþDt ¼ Xt � Xrb þ 1
2 rW þ bðt þ DtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrj2V þ ðrW þ bðt þ DtÞÞ2

q� �

Dk = max(kt+Dt,0) � n � prevDk
XtþDt ¼ Xt þ bDt þ rDW þ

Pm
j1 ;j2¼1Lj1rk;j2 Iðj1 ;j2Þ þ nðDkÞ

GuardedProb ¼ max exp �2ðn � ðXt�Xab;nÞÞðn � ðXtþDt�Xab;nÞÞ
n � ðrr�ðXt ÞnÞDt

� �
; n

� �

if U1 = rand(0,1) < GuardedProb
then FireGuardedTransition

if U2 = rand(0,1) < exp(�k(t � tTimeOfLastFire))
then FireProbabilisticTransition

t = t + Dt
return (Xt)

6. Case study: water balance

We present the water/electrolyte balance system in humans as a small, realistic biochemical model. The relative simplic-
ity of the model provides a platform for demonstration and comparison of the simulation methods in terms of accuracy and
scalability.

6.1. Background

Water/electrolyte balance regulation in mammals is vital to life. If too much salt is present, dehydration occurs, leading to
discomfort, performance degradation, and even death. If too much water is present, arterial pressure rises dangerously and
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the nervous system begins to malfunction. Therefore, virtually every living organism has a system that regulates water bal-
ance. In humans, this system includes blood pressure sensors, the kidneys, the hypothalamus, and other minor organs.

Anti-diuretic hormone (ADH) is a nine amino acid peptide hormone secreted by the hypothalamus. ADH is released when
the body senses the intake of too much salt or a shortage of water. Upon these conditions ADH signals to the kidneys to retain
water to compensate and bring the body back to equilibrium. Upon secretion, ADH travels through the bloodstream to exert
the majority of its effects on specific receptors (arginine vasopressin receptor 2; AVPR2) in specialized cells within the kidney
tubules. When ADH binds AVPR2, a chain of intracellular signaling events take place. The succession of signaling events ulti-
mately results in additional insertion of extra water channels (aquaporins; AQP2) into the apical membrane of the cell. Aqu-
aporins allow water to pass out of the nephrons and be re-collected into the cells. Once the water is reabsorbed, a smaller,
more concentrated amount of urine is excreted.

The insertion of AQP2 channels into the cell’s outer membrane is a highly regulated, multistep process. AQP2 is synthe-
sized in the cell and inserted into intracellular membrane structures called vesicles. When called upon by ADH–AVPR2 inter-
action and resulting intracellular signaling, attachment and tethering proteins specifically direct the vesicles to fuse with the
outer membrane of the cell. The fusion event results in the addition of the AQP2 molecules to the outer membrane. The total
number of available AQP2-containing vesicles and the attachment and tethering proteins are both inherently limited in any
given cell resulting in a saturation point for sensitivity of the cell to ADH [24].

When ADH is withdrawn, AQP2 accumulates in special membrane domains (clathrin-coated pits), which are subse-
quently engulfed (endocytosed) by the cell. Endocytosed AQP2 receptors are then recycled within the cells, ready for the next
ADH signal. AQP2 is continuously and quickly recycled between the cell surface and intracellular compartments, rebounding
between upper and lower limits for AQP2 cell surface localization. This behavior results in a reflection of the observed effects
at the ADH saturation limit [24].

6.2. SHS model

We have developed a SHS model of the water/electrolyte balance system, seen in Fig. 4. The SHS has been adapted from
the SDE model in [8] to include the hybrid thirst/dehydration mechanism described in [9]. The model includes two discrete
states: normal and dehydrated. Transitions between the normal and dehydrated modes are defined by the transition guards
in Fig. 4 and are based on the ratio of water to salt (or electrolyte concentration) in the body derived from data in [9].

We define three continuous states: total body water x1, total body salt x2, and ADH x3 within each discrete state. The
dynamics for the water and salt variables were based on simple input/output differences in the system with an added dif-
fusion term that models uncertainty and system variability [8]. SDEs are used with constant diffusion because of the uncer-
tainty of molecular interactions in these types of biochemical systems. Fluid output is directly dependent on the ADH
concentration which is in turn affected by the fluid/salt ratio in the body.

The following SDEs describe the continuous dynamics in the normal state
dx1 ¼ fin � 45x�0:76
3

� �
dt þ 0:01dw1

dx2 ¼ ðsin � soutÞdt þ 0:01dw2

dx3 ¼ ð�4:5Þdt þ 0:01dw3
where fin describes the amount of fluid input to the system per unit time, sin describes the amount of salt input to the system
per unit time, sout describes the amount of salt output from the system per unit time, and w = [w1, w2, w3]T is a three-dimen-
sional Wiener process.

The next set of equations describe the dynamics when the body is in the dehydrated state determined by the electrolyte
concentration.
dx1 ¼ ðfin � 45x�0:76
3 Þdt þ 0:01dw1

dx2 ¼ ðsin � soutÞdt þ 0:01dw2

dx3 ¼
80 � x2

x1

� �
dt þ 0:01dw3
Fig. 4. SHS model of the water balance model.
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The constants for the continuous dynamics were adapted from [8] to match the experimental data in [9]. We fit the exper-
imental data to curves and determined appropriate adaptations for the dynamics when necessary. The values we used for our
experiments are fin = 40, sin = 2, and sout = 2. The fluid input fin can be modeled as a continuous stream or discrete input, so for
simplicity we consider only the continuous stream. Since our focus was primarily on the water balance, we modeled sin and
sout as constant functions; however, these could be easily extended to model more realistic behavior if salt balance is the
focus of the analysis.

Because ADH cannot have a negative value a reflective boundary is defined for x3 at the value of zero. We also define a
reflective boundary at x3 = 12 to mimic the saturation limit of ADH in the kidneys. The limit is defined by the invariants in the
system x3 2 0,12. This range will not necessarily be the same for every person, but seems reasonable based on experimental
data from [9]. Both the water concentration and salt concentration also must remain positive, but both of these concentra-
tions maintain values sufficiently far from 0, so reflective boundaries are unnecessary.

Simulation of this model is important because it may help improve the understanding of the biological system and iden-
tify statistically significant aberrations in patients. Efficient, accurate simulation techniques are important to be able to refine
the model and perform Monte Carlo analysis on the simulation data.

6.3. Boundary crossing detection

We implemented three SHS simulation algorithms: baseline (HEM with traditional boundary detection methods), Algo-
rithm 5.1 (HMM with probabilistic boundary detection methods and adaptive timestepping), and Algorithm 5.1-fixedstep
(HMM with probabilistic boundary detection methods and fixed time steps). We used the same Brownian motion for each
set of simulation comparisons to highlight the algorithmic differences. In Fig. 5 the switching electrolyte boundary is pre-
sented for the baseline algorithm and Algorithm 5.1-fixedstep, and the difference between the detection times is shown
by the gap between the indicated detection points. The proposed method anticipates the boundary crossing using probabi-
listic methods to avoid error incurred by over-shooting the crossing, while the baseline method re-starts the process only
after the crossing is detected. It is evident that the anticipatory methods of the improved technique significantly alter the
resulting trajectory thereby reducing the error incurred. In the water/electrolyte system this may mean that the actual sys-
tem will react sooner than the model will indicate with the traditional simulation method predicts. For these simulations we
used a step size of Dt = .05 and initial conditions shown in Table 1.

We consider the ADH concentration to demonstrate the reflecting boundary algorithm differences between the baseline
algorithm and Algorithm 5.1-fixedstep. In Fig. 6 the reflecting boundary is represented by the dark line at ADH = 12. In the
baseline method, the trajectory reaches the boundary and is kept within the valid state. However, the dynamics of the actual
system are not well represented because the real system reaches a reflecting saturation level at the boundary. Algorithm 5.1-
fixedstep accurately demonstrates the probabilistic effect of the reflected saturation boundary. The receptors in the real sys-
tem cannot maintain the full concentration at 12 because the molecules of ADH have to be released to permit new molecules
Fig. 5. Absorbing boundary in water balance model.

Table 1
Initial conditions.

Variable x1 x2 x3

Absorbing 39,790 2132 1
Reflecting 39,700 2132 11



Fig. 6. Reflecting boundary in the water balance model.
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to bind. The receptors cannot fire in an unbound state, so the influence of the ADH concentration must be reduced, as is evi-
denced by the small drops in concentration near the boundary. These drops eventually lead to a distinct difference between
the outcomes of the two trajectories. While both trajectories eventually reach an equilibrium (not included in the figure), the
difference in the dynamics leading to equilibrium may reveal new insights into the system. For these simulations, we used a
step size of Dt = 0.05 and initial conditions shown in Table 1.

Performance results for the fixed step implementations are presented in Table 2. We ran 1000 sequential simulations of
each algorithm at the given resolution. Algorithm 5.1-fixedstep increases the running time relative to the baseline method;
however, the increase is small, the method scales well, and the accuracy improvement is significant. The simulations were
performed on a 3 GHz desktop computer with 1 GB of RAM.

6.4. Step size results

The step size of the approximation directly influences the accuracy of the approximation. In Fig. 7, we compare four dif-
ferent step sizes of Algorithm 5.1-fixedstep and resulting trajectories with the same initial conditions as the absorbing
Table 2
Execution times (s).

Dt Baseline Algorithm 5.1-fixedstep

0.0001 352 374
0.0002 176 189
0.0005 70 75
0.001 37 38
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Fig. 7. Step size comparison.



Fig. 8. Variable step example.
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boundary example. We used the Wiener process from the highest-resolution trajectory with each lower-resolution simula-
tion to ensure the comparison is accurate. At very fine resolutions the system becomes highly noisy. Thus, using more accu-
rate approximation techniques with higher orders of convergence ensures that larger time steps can be used to maintain
acceptable accuracy without having to approximate the highly noisy dynamics that lead to zeno behavior at boundaries if
not handled carefully.

We compare simulations of Algorithm 5.1-fixedstep (with time step Dt = 0.01) with Algorithm 5.1 in Fig. 8. It can been
seen in the figure that as the trajectory becomes less steep, the step size increases to improve efficiency, and when the tra-
jectory crosses the threshold near the boundary, the variable time stepping algorithm uses the highest-resolution step to
accurately estimate the boundary. The fixed step implementation required 1000 steps for the approximation while the var-
iable step method with step error bounds of jEbj + jErj < 0.01 required only 295 steps, over tripling the efficiency and there-
fore reducing the runtime for this segment by almost one third. The figure shows that the accuracy is not significantly
hindered by using the variable step size algorithm. Tighter error bounds can be used to create more accurate approximations
at the cost of efficiency. Efficiency and execution time improvements are dependent on the dynamics of the model and error
bounds, so significant efficiency gains can be expected but are not guaranteed.

7. Case study: biodiesel model

We present the biodiesel model as a large, complex model to demonstrate the scalability of our simulation methods for
larger, complex systems. We use the biodiesel model to analyze the error and efficiency of both fixed and adaptive step
methods. The biodiesel model has been developed and presented previously in [25], so we present a condensed description
of the model.

7.1. Background

Biodiesel is made from vegetable oil and other chemicals by a process called transesterification [26]. The process involves
six chemical species and six highly-coupled reactions. Vegetable oil in its purest form is made up of triglycerides (TG); how-
ever, it breaks down into diglycerides (DG) and monoglycerides (MG) as it is heated. An alcohol, methanol (M), is combined
with the TGs, DGs, and MGs to convert them into biodiesel esters (E) and glycerol (GL). The chemical reactions are modeled
using the reaction dynamics described in [25].

It is critical to determine whether or not a biodiesel processor can produce high quality biodiesel that passes the Amer-
ican Society for Testing and Materials (ASTM) biofuels tests. Studies show that the amounts of GLs and TGs that are less than
one percent still allow the resulting fuel to meet ASTM specifications [27]. The ASTM requirements also limit the amount of
methanol that is dissolved in the biodiesel; however, to meet this requirement most biodiesel production systems use post-
processing washing techniques that clean the excess methanol from the biodiesel after the main reactions fully complete
[28].

7.2. SHS model

We use the Variable Temperature BioDiesel (VTBD) model from [25]. The continuous dynamics in each state model the
fluctuations in chemical concentrations and temperature. As seen in Fig. 9, the model has two discrete states. One models the
system heating q1, and the other models the cooling state q2. The glycerol separation is modeled using the self-loop transi-
tions in each discrete state.



q1

dx=b(q1,x)dt+
(q1,x)dW

x7>77/x7:=x7+0.1

x7<75/x7:=x7-0.1

q2

dx=b(q2,x)dt+
(q2,x)dW

x6>.005/x6:=10-5 x6>.005/x6:=10-5

σσ

Fig. 9. SHS model of the VTBD system.
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Since chemical dynamics are inherently stochastic, SDEs are an appropriate modeling paradigm for the chemical concen-
trations. We model the continuous dynamics for the system using SDEs as described in detail in [25].

Biodiesel is made in processors that use heaters and thermostats to regulate the temperature because the chemical reac-
tions involved are highly sensitive to temperature. Heating the reacting liquid is necessary to ensure production of high qual-
ity biodiesel, but using too much heat wastes time and money. Therefore, processors generally have built-in thermostats that
control the temperature. To model this, we use two discrete states of the system, one for heating and one for cooling. We
model the thermostat controller using guarded transitions between the heating and cooling states given in [25].

7.3. Step size results

We use the VTBD model to demonstrate the performance and accuracy advantage of using adaptive time stepping meth-
ods. We consider the VTBD model with initial conditions: x1 = 0, x2 = 0.8, x3 = 3, x4 = 0, x5 = 10, x6 = 0, and x7 = 70. We used
Algorithm 5.1-fixedstep with time steps: Dt = 0.001,0.0001,0.00001,0.000001. We compared the fixed step results with
the adaptive Algorithm 5.1 with upper bounds: 0.01,0.001,0.0001,0.00001 and lower bounds: 0.0001,0.00001,
0.000001,0.0000001. Algorithm 5.1 starts with a small step size Dt = 0.0000001, and the algorithm quickly adjusts the step
size according to the error, so little efficiency is lost and accuracy is preserved. We present the execution times and resulting
overall error estimates for the fixed and adaptive methods in Fig. 10. It can be seen in the figure that the adaptive time step
methods provide significant accuracy and efficiency improvements over fixed time step methods.

7.4. Monte Carlo results

Reachability for SHS can be computed using our improved ATHMM simulation algorithm (Algorithm 5.1) and Monte Carlo
methods [29]. To evaluate the accuracy and efficiency of Monte Carlo methods and ATHMM algorithm, we tested the out-
comes of the safety probability for the VTBD system using various numbers of iterations n. The performance and accuracy
results of this analysis can be seen in Fig. 11. It is shown in the figure that increasing the number of iterations n increases
the runtime therefore decreasing the efficiency, but the confidence in the solution improves significantly as the number of
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Fig. 10. Error comparison of time stepping methods for the VTBD model.



Fig. 11. 95% Confidence interval results with execution times for Monte Carlo methods using various numbers of iterations.
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Monte Carlo iterations increases. The 95% confidence interval estimation, upper, and lower bounds for the four trials are
shown in Fig. 11.
8. Conclusion

Accurate and efficient simulation of SHS is an important task because it is an important tool that can expose the intrica-
cies of the complicated dynamics of highly-coupled systems like biochemical processes. The interplay between the contin-
uous and discrete dynamics in SHS can introduce large errors into the simulations at the boundaries, so they must be
approximated carefully. Our technique for simulating SHSs utilizing probabilistic absorbing boundary crossing detection
and reflecting boundary calculation improves the accuracy and efficiency of the simulator when compared with the naive
approaches. Further, the adaptive time stepping implementation we present further increases the ability of the simulator
to take advantage of efficiency gains as well as provides the opportunity to bound the error of the approximation using
the error estimates.

References

[1] M. Bujorianu, J. Lygeros, Theoretical foundations of general stochastic hybrid systems: modeling and optimal control, in: IEEE Conf. on Dec. and Cont.,
2004.

[2] R. Ghosh, C. Tomlin, Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta–notch
protein signalling, Syst. Biol. 1 (2004) 170–183.

[3] R. Alur, C. Belta, F. Ivanicic, V. Kumar, M. Mintz, G. Pappas, H. Rubin, J. Schug, Hybrid modeling and simulation of biomolecular networks, in: Hybrid
Systems Computation and Control, LNCS, vol. 2034, 2001, pp. 19–33.

[4] J. Hespanha, A. Singh, Stochastic models for chemically reacting systems using polynomial stochastic hybrid systems, Int. J. Robust Control 15 (2005)
669–689 (Special Issue on Control at Small Scales).

[5] J. Hu, W. Wu, S. Sastry, Modeling subtilin production in bacillus subtilis using stochastic hybrid systems, in: Hybrid Systems Computation and Control,
LNCS, vol. 2993, 2004, pp. 417–431.

[6] S. Drulhe, G. Ferrari-Trecate, H. de Jong, A. Viari, Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks, in:
Hybrid Systems Computation and Control, LNCS, vol. 3927, 2006, pp. 184–199.

[7] H. Salis, Y. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions, J. Chem. Phys. 122 (2005) 54–
103.

[8] M. Leaning, R. Flood, D. Cramp, E. Carson, A system of models for fluid-electrolyte dynamics, IEEE Trans. Biomed. Eng. 32 (10) (1985) 856–864.
[9] O. Karanfil, A Dynamic Simulator for the Management of Disorders of the Body Water Metabolism, Master’s Thesis, Bogazici University, 2005.

[10] M. Bernadskiy, R. Sharykin, R. Alur, Structured modeling of concurrent stochastic hybrid systems, FORMATS LNCS 3253 (2004) 309–324.
[11] Mathworks, Simbiology, <http://www.mathworks.com/products/simbiology/>.
[12] R. Mannella, Absorbing boundaries and optimal stopping in a stochastic differential equation, Phys. Lett. A 254 (1999) 257–262.
[13] G. Lamm, Extended Brownian dynamics. III: three dimensional diffusion, J. Chem. Phys. 80 (6) (1983) 2845–2855.
[14] E. Peters, T. Barenbrug, Efficient Brownian dynamics simulation of particles near walls. I: reflecting and absorbing walls, Phys. Rev. 66 (2002) 1–7.
[15] C. Constantini, B. Pacchiarotti, F. Sartoretto, Numerical approximation for functionals of reflecting diffusion processes, SIAM J. Appl. Math. 58 (1998)

73–102.
[16] E. Gobet, Euler schemes and half-space approximation for the simulation of diffusion in a domain, ESAIM: Probab. Stat. 5 (2001) 261–297.
[17] J. Gaines, T. Lyons, Variable step size control in the numerical simulation of stochastic differential equations, SIAM J. Appl. Math. 57 (1997) 1455–1484.
[18] H. Lamba, An adaptive timestepping algorithm for stochastic differential equations, J. Comput. Appl. Math. 161 (2003) 417–430.
[19] H. Salis, V. Sotiropoloulos, Y. Kaznessis, Multiscale Hy3S: hybrid stochastic simulation for supercomputers, BMC Bioinform. 7 (93) (2006).
[20] D. Riley, X. Koutsoukos, K. Riley, Modeling and simulation of biochemical processes using stochastic hybrid systems: the sugar cataract development

process, in: Hybrid Systems Computation and Control, LNCS, vol. 4981, 2008, pp. 429–442.
[21] P. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, 1999.

http://www.mathworks.com/products/simbiology/


D.D. Riley et al. / Simulation Modelling Practice and Theory 18 (2010) 1397–1411 1411
[22] D. Riley, X. Koutsoukos, K. Riley, Modeling and analysis of the sugar cataract development process using stochastic hybrid systems, IET: Syst. Biol. 3 (3)
(2009) 137–154.

[23] V. Sotiropoulos, Y. Kaznessis, An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise:
chemical Langevin equation, a proof of concept, J. Chem. Phys. 128 (014103) (2008).

[24] Y. Noda, S. Sasaki, Regulation of aquaporin-2 trafficking and its binding protein complex, Biophys. Acta 1758 (2006) 1117–1125.
[25] D. Riley, X. Koutsoukos, K. Riley, Reachability analysis of stochastic hybrid systems: a biodiesel production system, Eur. J. Control, accepted for

publication (Special Issue on Stochastic Hybrid Systems).
[26] H. Noureddini, D. Zhu, Kinetics of transesterification of soybean oil, JAOCS 74 (11) (1997) 1457–1463.
[27] S. Fernando, P. Karra, R. Hernandez, S. Jha, Effect of incompletely converted soybean oil on biodiesel quality, Energy 32 (2007) 844–851.
[28] Y. Zhang, M. Dube, D. McLean, M. Kates, Biodiesel production from waste cooking oil: 1. Process design and technological assessment, Bioresource

Technology 89 (2003) 1–16.
[29] D. Riley, X. Koutsoukos, K. Riley, Reachability analysis for stochastic hybrid systems using multilevel splitting, in: Hybrid Systems Computation and

Control, 2009.


	Simulation of Stochastic Hybrid Systems using probabilistic boundary  detection and adaptive time stepping
	Introduction
	Related work
	Biochemical modeling
	Simulation of SHS

	Stochastic hybrid systems
	Fixed step SHS simulation
	Fixed time step simulation
	Numerical integration of SDEs
	Absorbing boundaries
	Reflecting boundaries
	Probabilistic transitions
	SHS simulation algorithms


	Adaptive time stepping for SHS
	Background
	SDE error approximation
	Adaptive time stepping for SDEs
	Adaptive time stepping for SHS
	Adaptive time stepping simulation algorithm

	Case study: water balance
	Background
	SHS model
	Boundary crossing detection
	Step size results

	Case study: biodiesel model
	Background
	SHS model
	Step size results
	Monte Carlo results

	Conclusion
	References


