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Abstract— Stochastic hybrid system models can be used to
analyze and design complex embedded systems that operate
in the presence of uncertainty and variability. Verification of
safety properties of such systems is a critical problem because of
the interaction between the discrete and continuous stochastic
dynamics. In this paper, we propose a probabilistic method for
verifying safety based on discrete approximations. We show that
the safety property can be characterized as a viscosity solution
of a system of coupled Hamilton-Jacobi-Bellman equations. We
present a computational algorithm for computing the solution
based on discrete approximations and we show that this solution
converges to the one for the original system as the discretization
becomes finer. Finally, we illustrate the approach with a room
heater example that has been proposed as a benchmark for
hybrid system verification.

I. INTRODUCTION

Many practical systems such as automobiles, chemical
processes, and autonomous vehicles are best described by
dynamics that comprise continuous state evolution within a
mode of operation and discrete transitions from one mode
to another, either controlled or autonomous. Such systems
often interact with the environment in the presence of un-
certainty and variability. Stochastic hybrid systems (SHS)
can model such complex dynamics, uncertainty, multiple
modes of operations, and they can support high-level control
specifications that are required for design of autonomous or
semi-autonomous applications.

Safety is the property that a system will not enter an unsafe
state or configuration. Safety verification is a critical problem
for complex embedded systems because of the interaction
between the discrete and continuous stochastic dynamics.
Safety specifications are usually expressed as formulas in
appropriate logics. Given a specification formula encoding
a safety property, the task is to determine whether the
formal model of the system satisfies the property or generate
a counterexample that violates the formula. In this paper,
we proposed a probabilistic method for verifying safety.
Instead of encoding the safety property with a logical formula
that can be evaluated to be true or false, we consider a
representation using measurable functions into [0,1] that
characterizes what is the probability that the system will
remain safe.

The contribution of the paper is twofold. First, we show
that the measurable function that represents the probabilistic
safety of a stochastic hybrid system can be characterized
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as a viscosity solution of a system of coupled Hamilton-
Jacobi-Bellman equations. Second, we present a computa-
tional algorithm based on finite differences for computing
the solution and we show that this solution converges to the
one for the original system as the discretization becomes
finer. Finally, we illustrate the approach with a room heater
example that has been proposed as a benchmark for hybrid
system verification.

In this paper, we consider the SHS model presented in [3].
A similar modeling framework and a simulation environ-
ment for concurrent stochastic hybrid systems is presented
in [1]. Applications of stochastic hybrid systems include
air traffic management systems [12] and communication
networks [9]. Stochastic hybrid systems can be viewed as
an extension of piecewise-deterministic processes [5] that
incorporate stochastic continuous dynamics. Viscosity solu-
tion techniques in optimal control of piecewise determinis-
tic processes have been investigated in [6]. Our approach
generalizes these techniques to SHS based on results for
continuous diffusions presented in [8].

This paper develops a systematic way to approximate
stochastic hybrid systems that is amenable to computational
methods [11]. The basic idea is to approximate the original
processes by an appropriate Markov chain defined on a
discrete state space. The approximation is achieved by con-
structing locally consistent chains that preserve local mean
and covariance. Based on the discrete approximation, the
verification problem can be solved using dynamic program-
ming [13], [4]. The main advantage of this approach is that
the analysis based on the discrete approximation is directly
related to the original processes through the notion of local
consistency, and further, it converges to the solution of the
original problem. It should be noted that the same approach
for optimal control of stochastic hybrid systems has been
presented in [10].

The remaining of the paper is organized as follows. Sec-
tion II formally describes the SHS model. Section III formu-
lates the probabilistic safety problem. Section IV presents the
discrete approximations based on finite differences. Section
V outlines the computational algorithm and presents the
convergence results. Section VI illustrates the approach for
the room heater benchmark and Section VII concludes the
paper.

II. STOCHASTIC HYBRID SYSTEMS

We use the Stochastic Hybrid System (GSHS) model
presented in [3]. Let Q be a set of discrete states. For
each q ∈ Q, we consider the Euclidean space R

d(q) with
dimension d(q) and we define an invariant as an open set



Xq ⊆ R
d(q). The hybrid state space is denoted as S =

⋃

q∈Q q ×Xq. Let S̄ = S ∪ ∂S and ∂S =
⋃

q∈Q q × ∂Xq

denote the completion and the boundary of S respectively.
The Borel σ-field in S is denoted as B(S).

To define the execution of the system, we consider an
R

p-valued Wiener process and a sequence of stopping times
{t0 = 0, t1, t2, . . .} that represent the times when the
continuous and discrete dynamics interact. Let the state at
time ti be s(ti) = (q(ti), x(ti)) with x(ti) ∈ Xq(ti). While
the continuous state stays in Xq(ti), x(t) evolves according
to the stochastic differential equation (SDE)

dx = b(q, x)dt+ σ(q, x)dw (1)

where the discrete state q(t) = q(ti) remains constant and the
solution of (1) is understood using the Itô stochastic integral.

The next stopping time is defined by t∗i+1 = inf{t ≥
ti, x(t) ∈ ∂Xq(ti)}. If ti+1 = ∞, the system contin-
ues to evolve according to (1) with q(t) = q(ti). If
ti+1 < ∞, the system jumps at ti+1 to a new state
s(ti+1) = (q(ti+1), x(ti+1)) according to the transition
measure R(s(t−i+1, A)) with A ∈ B(S). The evolution of
the system is then governed by (1) with q(t) = q(ti+1) until
the next stopping time.

The following assumptions are imposed on the model.
The functions b(q, x) and σ(q, x) are bounded and Lipschitz
continuous in x for every q, and thus the SDE (1) has a
unique solution. For the transition measure, it is assumed
that R(·, A) is measurable for all A ∈ B(S) and R(s, ·) is a
probability measure for all s ∈ S̄. Further, R((q, x), dz) is
assumed to be a stochastic continuous kernel.

Let Nt =
∑

i It≥ti
denote the number of jumps in the

interval [0, t]. It is assumed that Es[Nt] < ∞ for every
initial state s ∈ S. Sufficient conditions for ensuring finitely
many jumps can be formulated by imposing restrictions on
the transition measure R(s, A) [1].

In addition to the above assumptions, in this paper we
assume that the set Q is finite and that Xq is bounded for
every q. This is a reasonable assumption for many systems
that have finitely many modes and saturation constraints on
the continuous state. Even if the continuous state spaces
are unbounded, often is desirable to approximate them for
practical reasons. Further, we assume that the trajectories of
the SHS satisfy a non-tangency condition with respect ∂X q.
A sufficient condition for the non-tangency assumption is
that the the variance σ(q, x) is non-degenerate (the diffusion
matrix a(q, x) = σ(q, x)σT (q, x) is positive definite). The
non-tangency assumption can be satisfied even with degener-
ate variance by imposing appropriate conditions on the vector
fields b(q, x). In the remaining of the paper, we refer to the
class of GSHS that satisfies the assumptions above simply
as stochastic hybrid systems (SHS).

III. PROBABILISTIC SAFETY

In this section, we formulate the safety problem for SHS.
Let T = ∪q∈QT

{q} × T q be a subset of S representing the
set of safe states. The boundary of T is denoted by ∂T =
∪q∈QT

{q} × ∂T q. We assume that the set of unsafe states

Xq \ T q for each q is a proper subset of Xq, i.e. ∂Xq ∩
∂T q = ∅. The initial state (which, in general, is a probability
distribution) must lie inside the safe set T and the transition
measure R(s, A) is defined so that the system cannot jump
out of the safe set directly to the unsafe set. Consider the
stopping time τ = inf{t ≥ 0 : s(τ− ∈ ∂T )}. Let s be an
initial state in T , then we define the function V : T̄ → R by

V (s) =

{

Es[I(s(τ−)∈∂T )], s ∈ T
1, s ∈ ∂T

.

The function V (s) can be interpreted as the probability that
a trajectory starting at s will reach the boundary ∂T of the
safe set, i.e. the probability that the system is unsafe.

Inspired by [5], we add a new state ∆ and we denote
T ′ = T ∪ ∆. The system transitions to ∆ according to the
measure

R(s,∆) =

{

1, if s ∈ ∂T
0, otherwise .

The new process is indistinguishable from the original pro-
cess s(t) for t < τ and at time τ it jumps to ∆ and stays
there forever. The system dies immediately after transitioning
to ∆, i.e. b(∆) = σ(∆) = 0. Finally, we extend V to T ′

by defining V (∆) = 0 which agrees with the probabilistic
interpretation of V . By abuse of notation, we will denote the
new process also by s(t).

Next, we derive a representation of V that will be used to
show that V is a viscosity solution. Given the safe set T , we
construct a continuous bounded function c : S̄ → R+ such
that

c(q, x) =

{

1, if s ∈ ∂T q

0, if s ∈ ∂Xq .

Then the value function V can be written as

V (s) = Es

[
∫ ∞

0

c(qt− , xt−)dp∗(t)

]

where p∗(t) =
∑∞

i=1 I(t≥ti)I((qt
i−

,xt
i−

)∈∂S) is a counting
process counting the number of times the trajectory hits the
boundary and jumps. The SHS satisfies the strong Markov
property [3], and therefore, the Markov property can be
applied not only for constant times but also for random
stopping times. Let t1 be the time of the first jump, then

V (s) = Es

[

c(qt−
1

, xt
−

1

) +

∫

T

V (y)R((qt, xt), dy)

]

.

Let us define

ψV (q, x) = c(q, x) +

∫

T

V (y)R((q, x), dy)

then
V (s) = Es[ψ

V (qt1 , xt1)]. (2)

Assuming that the transition measure R(s, A) is a continu-
ous stochastic kernel, the map (q, x) →

∫

Γ
f(y)R((q, x), dy)

is bounded uniformly continuous for every bounded and
continuous function f [2]. Hence, if V is continuous,ψV will
be continuous as well. Equation (2) is very similar to a cost
criterion for a standard diffusion with a target set [11]. The



main difference is that the terminal cost ψV (q, x) depends
on the value function.

Consider the set of nonnegative Borel measurable func-
tions B(S)+ and define the operator G : B(S)+ → B(S)+
by

Gg(q, x) = Es[c(qt−
1

, xt
−

1

) + g(qt1 , xt1)].

We will show that V is a fixed point of G.
By the strong Markov property and the construction of the

process 1

Es[c(qt−
2

, xt−
2

) + g(qt2 , xt2)|F t1 ] =

Es[c(qt1 , xt
−

2

) + g(qt2 , xt2)|F t1 ] = Es[g(qt1 , xt1)].

Therefore,

G2
g(q, x) = G(Gg(q, x)) = Es[c(q

t
−

1

, x
t
−

1

) + Gg(qt1
, xt1

)]

= Es[c(q
t
−

1

, x
t
−

1

) + Es[c(q
t
−

2

, x
t
−

2

) + g(qt2
, xt2

)|Ft1
]]

= Es[c(q
t
−

1

, x
t
−

1

) + c(q
t
−

2

, x
t
−

2

) + g(qt2
, xt2

)].

By induction, we get

Gnψ(q, x) = Es[

n
∑

i=1

c(qt−
i

, xt
−

i

) + g(qtn
, xtn

)]

= Es[

∫ tn

0

c(qt− , xt−)dp∗(t) + g(qtn
, xtn

)].

Lemma 1 The value function V (s) is a fixed point of the
operator G.
Proof By definition of G, for any g1 ≤ g2 we have
Gg1 ≤ Gg2. Let v0(q, x) = 0 for every q and every
x and set vn+1(q, x) = Gvn(q, x). Then {vn} increases
monotonically and further, vn is finite for every n. Therefore,
limn→∞ vn(q, x) = v(q, x) exists. Note that convergence is
not guaranteed for other choices of v0.

Since v ≥ vn, we have Gv ≥ Gvn and thus Gv ≥ vn+1

for all n, therefore Gv ≥ v. In addition, Gvn = vn+1 ≤
v ≤ Gv and limn→∞ vn = v, therefore Gv ≤ v ≤ Gv and
v = limn→∞ vn is a fixed point of G.

Finally, v = limn→∞Gnv0 = Es[
∫ ∞

0
c(qt− , xt−)dp∗(t)]

therefore V is a fixed point of G, i.e. V (s) = GV (s).
Lemma 2 V is bounded and piecewise continuous in T̄ .
Proof Boundness is straightforward from the definitions.
Since R(s, A) is a continuous stochastic kernel, the map
(q, x) →

∫

T
f(y)R((q, x), dy) is bounded uniformly contin-

uous for every bounded and continuous function f [2]. As-
suming nondegeneracy of the variance σ(q, x), the stopping
time t1 depends continuously on the sample paths starting
at x(t0) [11] and by the strong Markov property this is true
for every ti. Therefore, V (s) is continuous on T̄ q for each
q.
Theorem 1 Assume that f and σ are continuously differen-
tiable in T̄ q for each q and for suitable C1 and C2 satisfy
|fx| ≤ C1, |σx| ≤ C1, and |f(q, 0) + |σ(q, x)| ≤ C2. Then
V is the unique viscosity solution of

H(q, x,DxV,Dx
2V ) = 0 in T q, q ∈ Q (3)

1
Ft denotes the filtration of the SHS process.

with boundary condition

V (q, x) = ψV (q, x) on ∂T q, q ∈ Q (4)

where

H(q, x,DxV,D
2
xV ) =

f(q, x)DxV +
1

2
tr(σ(q, x)σT (q, x)D2

xV ).

Proof First, we claim that

v(q, x) =

{

Gg(q, x) in T q, q ∈ Q
ψg(q, x) on ∂T q, q ∈ Q

is bounded and continuous in T̄ q and it is a unique viscosity
solution of

H(q, x,DxV,Dx
2V ) = 0 in T q, q ∈ Q (5)

V (q, x) = ψg(q, x) on ∂T q, q ∈ Q. (6)

For each q, this is the HJB equation of the exit problem
of an ordinary diffusion described by the SDE (1). Further,
ψg(q, x) is bounded uniformly continuous and we can apply
the results of [8] (Thm V.2.1 and Cor. V.3.1) to verify the
claim. From Lemma 1 and Lemma 2, we know that V is a
fixed point of G and that is bounded and continuous. Further,
ψV (q, x) is bounded uniformly continuous and by applying
again the results of [8], we conclude that V is the unique
viscosity solution of (3)-(4).

IV. DISCRETE APPROXIMATIONS

In this paper, we develop computational methods for safety
verification of stochastic hybrid systems based on discrete
approximations. This section employs the approximation
method presented in [11] for computing locally consistent
Markov chains (MCs). The local mean and covariance for
the SDE (1) on the interval [0, δ] are

E[x(δ) − x] = b(q(t), x(t))δ + o(δ)

E[(x(δ) − x)(x(δ) − x)T ] = a(q(t), x(t))δ + o(δ).

where a(q, x) = σ(q, x)σT (q, x). Let {ξn} be an MC on a
discrete state space Sh

q ⊂ Xq with transition probabilities
denoted by p((q, x), (q, y)). A locally consistent MDP must
satisfy

E[∆ξh
n] = b(q, x)∆th(q, x) + o(∆th(q, x))

E[(∆ξh
n −E[∆ξh

n])(∆ξh
n −E[∆ξh

n])T ] =

σ(q, x)σT (q, x)∆th(q, x) + o(∆th(q, x))

where ∆ξh
n = ξh

n+1 − ξh
n, ξ

h
n = x and ∆th(q, x) are

appropriate interpolation intervals (or the “holding times”)
for the MC.

The transition probabilities ph((q, x), (q, y)) and the in-
terpolation intervals can be computed systematically from
the parameters of the SDE (details can be found in [11]).
In the case the diffusion matrix a(q, x) is diagonal and we
consider a uniform grid with ei denoting the unit vector in
the ith direction, the transition probabilities are

ph((q, x), (q, x ± hei)) =
aii(q, x)/2 + hb±i (q, x)

Q(q, x)
(7)



and the interpolation interval is

∆th(q, x) =
h2

Qh(q, x)
(8)

where Qh(q, x) =
∑

i[aii(q, x) + h|bi(q, x)|] and a+ =
max{a, 0} and a− = max{−a, 0}.

Equation (7) gives the transition probabilities for all the
interior (discrete) points of Sq

h. The stochastic hybrid system
can be approximated by “discretizing” the boundaries and
approximating the transition measure R(s, A) by a discrete
transition probability kernel. Details are omitted due to
length limitations. Finally, all the boundary points of the safe
set are assumed to be absorbing.

V. COMPUTATIONAL ALGORITHMS AND CONVERGENCE

Consider the approximating MDP {sh
n} = {ξh

n, q
h
n}

with transition probabilities ph((q, x), (q, y)) defined in Sec-
tion IV and denote νh the stopping time representing that
(qh

n, ξ
h
n} reaches ∂T . Then, the value function V of can be

approximated by

V h(s) = Es

[

c(qh
νh
, ξh

νh
)
]

.

Since the approximating process is discrete, the above equa-
tion can be written as

V h(q, x)) =





∑

y,q′

ph((q, x, (q, y)V h(q′, y)





if x is and interior point and V h(q, x) = c(q, x) on the
boundary of the safe set.
V h(q, x) can be computed using a value iteration al-

gorithm. To show the convergence of the algorithm, first
we transform the problem to an equivalent problem by
adding a terminal state ∆ similar to Section III. Consider
an MC with state space S̃h = Sh ∪ {∆} and define the
transition probabilities so that p̃h((q, x),∆) = 1, if;x ∈ Sq

h,
p̃h(∆,∆) = 1, and p̃h((q, x), (q′, x′)) = ph((q, x), (q′, x′))
otherwise. This means the when the MC hits the boundary
of the safe set, it transitions to the state ∆ and stays there
for ever. Consider the function c̃ : S̃ → R+ with c̃(∆) = 1
and c̃(q, x) = 0 for every q and x. By abuse of notation,
we will denote the new process also by {sn}. Consider the
value function

Ṽ (s) = Es[

∞
∑

t=0

c̃(s(t))]. (9)

Clearly, this sum is well defined and bounded and Ṽ = V .
Proposition 1 Let Ṽ h

0 (q, x) = 0, then the iteration

Ṽ h
n+1(q, x) =





∑

y,q′

ph((q, x, (q, y)Ṽ h(q′, y)



 (10)

with Ṽ (∆) = 1 converges to Ṽ h = V h.
Proof Consider the value function described by (9) for {sh

n}.
Computing Ṽ h is a special case of the total expected reward
criterion for positive models [13]. The iteration (10) may
have multiple fixed points but if we pick Ṽ h

0 (q, x) = 0 the

iteration converges to the least fixed point Ṽ h [13] (Thm
7.2.12).

Finally, we show that the value function V h(q, x) obtained
based on the approximating MC converges to the value
function of the SHS as h→ 0.
Theorem 2 Let V h(q, x) be a solution of

V h(q, x)) =





∑

y,q′

ph((q, x, (q, y)V h(q′, y)



 (11)

with boundary condition V h(q, x) = c(q, x), x ∈ ∂T . Then

lim
y→x,h→0

V h(q, y) = V h(q, x).

Proof Let g ∈ B(S)+ be a continuous and bounded function
and suppose that V is the unique viscosity solution of (5-6)
that is bounded and continuous in T̄ q. Consider Σ̄h

q to be
a discretization of T̄ q and denote Σh

q and ∂Σh
q the set of

interior and boundary points respectively. Using the approx-
imation described in Section V the dynamic programming
equation for Σ̄h

q can be written as

V h(q, x) =

{

F h[V h(·)](q, x) if x ∈ Σh
q

ψg(q, x) if x ∈ ∂Σh
q

.

V is continuous and bounded viscosity solution of (5-6)
and ψg(q, x) is continuous. Therefore, for each q we have
a standard exit problem from T q for the SDE (1) and by
applying the results of [8] (Sec. IX.5) we have that V h

converges uniformly to V .
To show convergence of V h for the SHS, we replace g by

V and we follow an argument similar to the proof of Thm
1. Assume that V is given and define

V̄ h(q, x) =

{

F h[V̄ h(·)](q, x) if x ∈ Σh
q

ψV (q, x) if x ∈ ∂Σh
q

.

Since V is bounded and continuous we have
limy→x,h→0 V̄

h(q, y) = V̄ (q, x). Assume that for
each h, V̄ h is computed by a value iteration algorithm
with v0 = 0. Then, V h is a fixed point of F h

V and
therefore, V̄ h = V h for every h and V̄ = V . Therefore,
limy→x,h→0 V

h(q, y) = V (q, x).

VI. ROOM HEATER BENCHMARK

A modeling benchmark of a room heating problem has
been presented in [7]. The benchmark models the tempera-
ture dynamics of a building with three rooms and two mobile
heaters. The temperature in each room xi depends on the
temperature of the adjacent rooms, the outside temperature
u, and whether a heater is in the room.

The SDE describing the continuous dynamics of the
system is

dx = (Ax+Bu+ Cq) dt+ Σdw

where

A =





−.9 .5 0
.5 −1.3 .5
0 .5 −.9



 , B =





.4

.3

.4



 ,



C = diag(6, 7, 8), u = 4, Σ = diag(0.1), and w(t) is an
R

3-valued Wiener process.
The discrete states of the system describe the position and

condition of the heaters in the rooms. If a heater is in a room
and on, then a one is placed in the corresponding position
of that room. If the heater is not in the room or is in the
room but off, then a zero is placed in the corresponding
position. The heating benchmark has twelve heater modes
as shown in Figure 1. Mode transitions are denoted by the
arcs between nodes and are defined using a control policy for
moving the heater. The control policy is encoded by labeling
the transitions using guard conditions to encode the control
policy. Consider rooms i and j. If a heater is present in room
i, but off, it is switched on if xi ≤ oni and a heater that is
on is switched off if xi ≥ offi. A heater is moved from
room j to an adjacent room i if the following conditions are
true: (i) room i is without a heater, (ii) room j currently has
a heater, (iii) xi ≤ geti, and (iv) xj − xi ≥ difi.

q = [100]T

q = [010]T q = [000]T

q = [110]T q = [100]T

q = [001]T q = [000]T

q = [101]T

q = [001]T

q = [010]T q = [011]T

q = [000]T

Fig. 1. Automaton

We discretized the continuous state space by assuming
that the safe set is described by xi = [10, 20], i = 1, 2, 3
and the approximation parameter was set to h = 0.25.
The room heater benchmark evolves in a three-dimensional
continuous state space, hence it is difficult to visualize
the value function. To illustrate our results, we have set
a pre-defined threshold (0.1) that describes the acceptable
probability for reaching the unsafe set. Then, for each initial
mode we plot the “safe” set as the set of states that have a
probability below the threshold to reach the unsafe set. Figure
2 shows the the safe set. The iterative algorithm executed in
approximately 49 minutes on a 3.0 GHz desktop computer.

VII. CONCLUSIONS AND FUTURE WORK

This paper employs an approximation method for solving
the safety problem for stochastic hybrid systems. The main
advantage of the method is that it guarantees the convergence
of the solution based on the discrete approximation to the

10
15

20

10

15

20
10

15

20

X1X2

X
3

Fig. 2. Room heater benchmark safe states for q = [110]T

solution of the original problem. The approach gives rise
to several significant problems. A fundamental challenge
is to develop scalable numerical methods that can be ap-
plied to large systems. Towards this goal, currently we are
investigating methods based on variable resolution grids,
parallel methods, and as methods based on value function
approximation.
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