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Abstract. In this paper, the stability of switched linear systems is inves-
tigated using piecewise linear Lyapunov functions. Given a switched lin-
ear system, we present a systematic methodology for computing switch-
ing laws that guarantee stability based on the matrices of the system.
We assume that each individual subsystem is stable and admits a piece-
wise linear Lyapunov function. Based on these Lyapunov functions, we
compose \global" Lyapunov functions that guarantee stability of the
switched linear system. A large class of stabilizing switching sequences
for switched linear systems is characterized by computing conic parti-
tions of the state space. The approach is applied to both discrete-time
and continuous-time switched linear systems.

1 Introduction

In this paper, we study the stability of continuous and discrete-time switched
linear systems using piecewise linear Lyapunov functions and we identify classes
of switching sequences that result in stable trajectories. The main motivation
behind this problem is that it is often easier to �nd switching controllers than to
�nd a �xed controller. In the case when we have multiple control objectives, we
may design a continuous controller for each control objective, and control the
behavior of the plant by switching between di�erent controllers. For example,
in the control of the longitudinal dynamics of an aircraft with constrained angle
of attack, the control objective is twofold: track the pilot's reference normal
acceleration while maintaining a safety constraint in the angle of attack [8]. A
continuous feedback control law can be easily designed for each control objective
resulting in two asymptotically stable subsystems and a switching mechanism
can be used to simultaneously achieve both objectives. Such a switching system
might become unstable for certain switching sequences, even if all the individual
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subsystem are stable (see for example [8]). For such problems, it is important to
characterize switching sequences that result in stable trajectories.

Stability of switched systems has been studied extensively in the literature;
see for example [8, 16, 17] and the references therein. SuÆcient conditions for uni-
form stability, uniform asymptotic stability, exponential stability and instability
were established in [22]. Necessary conditions (converse theorems) for some of
the above stability results have also been established. Analysis tools for switched
and hybrid systems based on multiple Lyapunov functions were presented in [5].
Stability analysis of switched systems is usually carried out using a Lyapunov-like
function for each subsystem [8]. These Lyapunov functions are pieced together
in some manner in order to compose a Lyapunov function that guarantees that
the energy of the overall system decreases to zero along the state trajectories
of the system. The application of the theoretical results to practical hybrid sys-
tems is accomplished usually using a linear matrix inequality (LMI) problem
formulation for constructing a set of quadratic Lyapunov-like functions [12, 21].
Existence of a solution to the LMI problem guarantees that the hybrid system is
stable. However, in order to formulate the LMI problem, a partition of the state
space and therefore a switching law must be known a priori. Usually, such a
partition consists of a set of ellipsoidal regions derived by exploiting the physical
insight for the particular application. Although, the LMI approach for hybrid
system stability is computationally eÆcient, it is based only on suÆcient con-
ditions and more importantly, it relies on a particular partition chosen by the
designer.

In order to investigate the stability properties of practical hybrid systems,
there is an important need to characterize partitions of the state space that
lead to stable trajectories based on the system parameters. Such partitions can
be used very eÆciently for the design of switching control laws that guarantee
stability of the overall system. In our approach, we characterize a large class
of switching sequences that result in stable trajectories. Given a switched lin-
ear system, we present a systematic methodology for computing switching laws
based on the system parameters that guarantee stability. We assume that each
individual subsystem is stable and admits a piecewise linear Lyapunov function.
Based on these Lyapunov functions, we compose \global" Lyapunov functions
that guarantee stability of the switched linear system. The main contribution of
this work is that based on the piecewise linear Lyapunov functions we construct
a conic partition of the state space that is used to characterize a large class of
switching laws that result in stable trajectories.

It should be noted that the problem considered in this paper has been
addressed using multiple Lyapunov function tools under the assumption that
switching among stable systems is slow enough [8, 16]. Here, we consider piece-
wise linear Lyapunov functions and we develop a systematic approach to charac-
terize stabilizing switching sequence that o�ers a signi�cant advantage. Individ-
ual piecewise linear Lyapunov functions are \pieced together" in a systematic
way and they result in a conic partition of the state space that can be used
very eÆciently for the design of the switching control law. Note that the paper



reports results from [14] and that early results for the discrete-time case have
been reported in [15].

The paper is organized as follows. In Section 2, the problem of identifying
stabilizing switching sequences is described. Section 3 presents the necessary
background for piecewise linear Lyapunov functions. The emphasis is put on
computational methods for constructing such Lyapunov functions. The technical
results for the characterization of stabilizing switching sequences are presented in
Section 4. The application of the methodology to continuous-time switched linear
systems is presented in Section 5. Finally, concluding remarks are presented in
Section 6.

2 Problem Statement

In this section, we consider discrete-time switched linear systems described by

x(t+ 1) = Aqx(t); q 2 Q = f1; : : : ; Ng (1)

where x(t) 2 <n; t 2 Z+ (the set of nonnegative integers) and Aq 2 <
n�n.

The mathematical model described by (1) represents the continuous (state)
portion of a piecewise linear hybrid dynamical system. The particular mode q
at any given time instant may be selected by a decision-making process. In this
paper, we represent such a decision-making process by a switching law of the
form

q(t+ 1) = Æ(q(t); x(t)): (2)

Given x(t), the next state is computed using the mode q(t), that is x(t + 1) =
Aq(t)x(t). The function Æ : Q� <n ! <n is discontinuous with respect to x. A
switching law is de�ned here using a partition of the state space.

Our objective is to investigate the stability of the switched linear system (1)
under the switching law (2). Note that the origin xe = 0 is an equilibrium for
the system (1). Furthermore, for a particular switching law, the switched system
(1) can be viewed as a special case of a time-varying linear system, and therefore
the usual de�nitions of stability can be used; see for example [1].

3 Piecewise Linear Lyapunov Functions

In this section, we briey present some background material necessary for the
stability analysis of switched linear systems presented later in this paper. We
consider the discrete-time linear system

x(t+ 1) = Ax(t) (3)

where x(t) 2 <n and A 2 <n�n.

De�nition 1. A nonempty set P � <n is said to be (positively) invariant for
the system (3) if x(0) 2 P implies that x(t) 2 P for every t 2 (Z+) Z.



In the case when the system admits a positively invariant polyhedral set
P containing the origin a Lyapunov function can be constructed by consider-
ing the Minkowski functional (gauge function) of P ; see for example [3]. For
bounded invariant polyhedral sets this is accomplished as follows (the extension
to unbounded polyhedral sets is straightforward):

Let Fi be a face of a polytope and consider the corresponding hyperplane Hi

as shown in Fig. 1. The hyperplane can be described (perhaps after normaliza-
tion) by Hi = fx 2 <n : hx;wii = 1g. where wi 2 <n is the gradient vector of
the hyperplane and h�; �i denotes the inner product.
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Fig. 1. A polytope P , a face Fi and its corresponding hyperplane Hi.

Since the set P includes an open neighborhood of the origin, <n can be
partitioned into a �nite number of cones de�ned as follows. Each face F of the
polytope can be described as the convex hull of its extreme points fj 2 <n; j =
1; : : : ; r. A �nitely generated cone can be de�ned for the face F by

cone(F ) = fx 2 <n : x =

rX
j�1

�jfj ; �j > 0; j = 1; : : : ; rg: (4)

Consider a polytope P � <n and assume that 0 2 int(P ). The Minkowski
functional of P is de�ned by

V (x) = inff� > 0jx 2 �Pg (5)

where �P = f�xjx 2 Pg. Consider a particular face Fi and the corresponding
cone. Since Fi 2 @P there exist unique � > 0 and x̂ 2 Fi such that for any
x 2 cone(Fi) we have x = �x̂ and the Minkowski functional can be computed by

V (x) =
kxk2
kx̂k2

= � = �hx̂; wii = hx;wii (6)

since hx̂; wii = 1. Therefore, for x 2 cone(Fi), the Lyapunov function induced
by the set P can be written as V (x) = hx;wii. Consequently, the Lyapunov
function induced by P can be computed for x 2 <n by

V (x) = max
1�i�m

hx;wii: (7)



A special case of piecewise linear Lyapunov functions arise when the posi-
tively invariant set P of De�nition 1 is centrally symmetric. In this case, the
Lyapunov function V (x) can be represented using the in�nity norm. Further-
more, there exists a class of linear systems for which such a Lyapunov function
can be computed very eÆciently. Consider the following Lyapunov function can-
didate V (x) = kWxk1 where W 2 <m�n and k � k1 denotes the in�nity norm
de�ned by kxk1 = max1�i�n jxij.

Theorem 1. [2] V (x) = kWxk1 is a Lyapunov function for the system (3)
if and only if there exist a matrix Q 2 <m�m such that WA � QW = 0 and
kQk1 < 1.

It should be noted that similar results have been established for di�erential
and di�erence inclusions in [19].

3.1 Computation of Piecewise Linear Lyapunov Functions

In order to study the stability properties of the switched linear system (1) we
assume that each individual subsystem admits such a piecewise linear Lyapunov
function. The eÆcient computation of each Lyapunov function is very important
for the application of the proposed methodology to practical hybrid systems. In
the previous section, we described a class of piecewise linear functions induced by
polyhedral sets that contain the origin. A Lyapunov function for each individual
subsystem can be de�ned by computing a positively invariant polyhedral set for
the subsystem. In the following, we briey give the necessary background for
the computation of these piecewise linear Lyapunov functions. First, we briey
describe an important class of systems for which positively invariant polyhedral
sets and the corresponding Lyapunov functions can be computed by a similarity
transformation [2]. In this case, the Lyapunov functions can be described using
the in�nity norm. Second, we outline an algorithm [6, 7] which can be used for
the computation of general positively invariant polyhedral sets.

A class of linear systems for which such a Lyapunov function can be computed
very eÆciently is presented in [2]. Consider the system x(t+1) = Ax(t) where the
eigenvalues of the matrix A are located in the complex plane within the square
de�ned by the vertices (1; 0); (0; i); (�1; 0); and (0;�i). Then, the following result
is shown.

Corollary 1. [2]. If all the eigenvalues �i = �i � �i of the nth order linear
system x(t+ 1) = Ax(t) are in the open square j�ij+ j�ij < 1, then there exists
a matrix W 2 <n�n with rankW = n such that the polyhedral set P = fx 2 <n :
kWxk1 < 1g is a positively invariant set for the system.

The matrix W can be computed as the solution to the matrix equation

WA�QW = 0 (8)

with the condition kQxk1 < 1. It is well known [10] that if the matrices A and
Q do not have common eigenvalues then (8) has only the trivial solution W = 0.



The important assumption in Corollary 1 is thatW 2 <n�n with rankW = n. In
this case, W can be computed as the similarity transformation matrix by which
A is transformed to the Real Jordan Canonical Form [10].

We presented a class of discrete-time linear systems for which positively in-
variant polyhedral sets are described by the Lyapunov function V (x) = kWxk1
and can be computed very eÆciently. However, it should be noted that in our sta-
bility analysis for switched linear systems, it is not necessary for the individual
invariant polyhedral sets to be centrally symmetric. Positively invariant poly-
hedral sets for stable discrete-time systems can be determined using computer
generated Lyapunov functions [6]. The class of computer generated Lyapunov
functions has been used for stability analysis of nonlinear systems in [6, 7, 18,
20]. The main idea is to construct a Lyapunov function that guarantees the sta-
bility of a set of matrices that is determined by applying Euler's discretization
method to a system of nonlinear di�erential equations.

Our approach here is to use a computer generated Lyapunov function for
each individual subsystem. Consider the matrix A 2 <n�n and let P0 � <n be
a bounded polyhedral region of the origin. We denote the convex hull of P by
conv(P ). Following [6] we de�ne

Pk = conv

 
1[
i=0

AiPk�1

!
(9)

and

P � =

1[
i=0

Pi: (10)

The following results may be found in [6]: First, the matrix A is stable if and
only if P � is bounded. Second, if A is stable then each set Pk can be computed
by Pk�1 using �nitely many iterations. Furthermore, it is shown in [7] that if
there exists constant K 2 < such that the eigenvalues of A satisfy the condition
j�ij � K < 1, then the set P � is �nitely computable. In this case the set P �

is polyhedral as the convex hull of �nitely many points. Furthermore, P � is a
positively invariant set of the system. Then, a piecewise linear Lypunov function
can be de�ned as the Lypunov function induced by the set P �.

4 Stabilizing Switching Sequences

In this section, we present an approach based on multiple Lyapunov functions
for the stability analysis of the switched system (1). The main contribution is
an eÆcient characterization of a class of switching laws of the form (2) which
guarantee the stability of the system. We assume that each individual subsystem
admits a positively invariant polyhedral set that contains the origin which is
described by

Pq = fx 2 <n : W qx < �1g (11)

where W q 2 <mq�n and �1 = [1; : : : ; 1]T 2 <n. In view of the above results, such
a polyhedral set can be computed if the there exists constant K 2 < such that



the eigenvalues of Aq satisfy the condition j�ij � K < 1. We denote the rows of
the matrix W q by wq

i 2 <n; i = 1; : : : ;mq. The Lyapunov function induced by
the set Pq can be described by

Vq(x) = max
1�i�mq

hx;wq
i i: (12)

We consider a class S of switching sequences that can be described by s =
(q0; t0); (q1; t1); : : : ; (qj ; tj); : : : ; x(t0) = x0. It is assumed that if s is �nite then
tj+1 =1 and that qj 6= qj+1. Such a sequence can be generated by the switching
law qj(tj + 1) = Æ(qj�1(tj); x(tj)); j = 1; 2; : : :.

Proposition 1. Consider a switching sequence s 2 S. If Vqj [x(tj+1)] � Vqj�1 [x(tj)];
j = 1; 2; : : :, then the switched system x(t+1) = Aqx(t) is stable in the sense of
Lyapunov.

Proof. Consider the multiple Lyapunov function de�ned by

V [x(t)] = Vqj [x(t)]; tj < t � tj+1 (13)

then by the de�nition of Vqj we have that for every t > t0; t 2 Z+

DV (x) = V [x(t + 1)]� V [x(t)] � 0: (14)

Note that the switched system for a �xed switching sequence s can be viewed as
a time-varying system. Since V (x) is positive de�nite and radially unbounded,
and DV negative semide�nite, the system is stable in the sense of Lyapunov; see
for example [1].

A multiple Lyapunov function composed by piecewise linear Lyapunov func-
tions of the individual subsystems o�ers a signi�cant advantage. It allows the
characterization of the switching sequences that satisfy the condition of Propo-
sition 1 by computing a conic partition of the state space.

First, we briey describe the necessary notions and notation from convex
analysis in order to construct the conic partition. Given a polytope P 2 <n, then
a face of dimension k is denoted as k�face F . The hyperplane that corresponds
to a k�face F is de�ned by the aÆne hull of F and is denoted by a�(F ). Each
(n � 1)�face corresponds to a hyperplane that is de�ned by a�(Fi) = fx 2
<n : hx;wii = 1g where wi 2 <n is the corresponding gradient vector. The set
of vertices of F can be found as vert(F ) = vert(P ) \ a�(F ) where vert(P ) is
the set of vertices of the polytope P . Finally, we denote the cone generated by
the vertices of F by cone(F ). Consider a pair of subsystems with matrices Aq1

and Aq2 . We want to compute the region 
q2
q1

= fx 2 <n : Vq2 (x) � Vq1(x)g.
Consider the faces F q1

i1
and F

q2
i2

of the polytopes Pq1 and Pq2 respectively and
assume that C = cone(F q1

i1
) \ cone(F q2

i2
) 6= ;. Next, we de�ne the halfspace

Hq2
q1

= fx 2 <n : hx;wq2
i2
�wq1

i1
i � 0g and the set 
 = C\Hq2

q1
. It is shown in the

following lemma that the multiple Lyapunov function de�ned in Proposition 1
is decreasing if the system switches from q1 to q2 while x 2 
.



Lemma 1. For every x 2 
 we have that Vq2(x) � Vq1(x).

Proof. For every x 2 C the Lyapunov functions for the subsystems are given
by Vq1 (x) = hx;wq1

i1
i and Vq2(x) = hx;wq2

i2
i respectively. If x 2 
 we have that

hx;wq2
i2
� w

q1
i1
i � 0 since x 2 Hq2

q1
, and therefore Vq2(x) � Vq1(x).

Since 0 2 Hq2
q1
, the set 
 is a clearly a polyhedral cone as the intersection

of cones with a common apex (x = 0) as shown in Fig. 2. The set 
q2
q1

can be
computed as the union of polyhedral cones by repeating the above procedure
for all the pairs (F q1

i1
; F

q2
i2
) of (n � 1)�faces of the polytope P as shown in the

following algorithm.
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Fig. 2. The conic partition of the state space.

Algorithm for the computation of 
q2
q1

INPUT: W q1 ;W q2 ;
for i1 = 1; : : : ;mq1

for i2 = 1; : : : ;mq2

C = cone(F q1
i1
) \ cone(F q2

i2
);

if C 6= ; then
Hq2
q1

= fx 2 <n : hx;wq2
i2
� w

q1
i1
i � 0g


 = C \Hq2
q1
;


q2
q1

= 
q2
q1
[
;

end
end

end

The above procedure can be repeated for every pair of subsystems to iden-
tify a class of stabilizing switching signals for the switched linear system. The
class of switching sequences is characterized by the following result. Note that a
numerical example that illustrates the approach may be found in [15].



Theorem 2. Consider the class of switching sequences S de�ned by

qj(tj + 1) = Æ(qj�1(tj); x(tj)) (15)

x(tj) 2 
qj
qj�1

6= ; (16)

for j = 1; 2; : : :. The switched linear system x(t + 1) = Aqx(t) is stable in the
sense of Lyapunov for every switching sequence s 2 S.

Proof. By induction, we have that if s = (q0; t0) then the system is stable
since Aq0 is stable. Assume that the switched system is stable for the switch-
ing sequence s = (q0; t0); (q1; t1); : : : ; (qj�1; tj�1) and consider the sequence
s0 = (q0; t0); (q1; t1); : : : ; (qj�1; tj�1); (qj ; tj). Since x(tj) 2 


qj
qj�1 , we have that

Vqj [x(tj)] � Vqj�1 [x(tj)]. Therefore, the multiple Lyapunov function de�ned by
V [x(t)] = Vqj [x(t)]; tj < t � tj+1 is decreasing for every t and the system is
stable in the sense of Lyapunov.

5 Continuous-time Switched Linear Systems

In this section, a characterization of stabilizing switching sequences for continuous-
time switched linear systems is presented. The set of stabilizing switching se-
quences is characterized by computing a conic partition of the state space simi-
larly to the discrete-time case. We consider the switched linear system

_x(t) = Aqx(t); q 2 Q f1; : : : ; Ng (17)

where x(t) 2 <n and Aq 2 <
n�n. The switching law is described by

q(t+) = Æ(q(t); x(t)): (18)

where t+ = lim�!t; �>t � . The problem is to identify classes of switching signals
generated by (18) for which the system (17) is stable. Note that in the following it
is assumed that only �nitely many switchings can occur in a �nite time interval.

5.1 Background Material

In order to study the stability properties of the switched linear system (17),
we assume that each individual subsystem admits a piecewise linear Lyapunov
function induced by a positively invariant polyhedral set. Next, we summarize
some results from [13] for the computation of piecewise linear Lyapunov functions
for a class of continuous-time linear systems. Consider the continuous-time linear
system _x(t) = Ax(t) where x(t) 2 <n and A 2 <n�n.

Similarly to the discrete-time case, there exists a class of continuous lin-
ear systems for which a positively invariant polyhedral set can be computed
very eÆciently. If the eigenvalues �i of the linear system satisfy the condition
jImf�igj < jRef�igj then a Lyapunov function V (x) = kWxk1 can be con-
structed using a similarity transformation [13].



The use of piecewise linear Lyapunov functions for the stability of linear
systems is based on the following result [11]. Assume that there exists a function
V (x) such that V is positive de�nite and radially unbounded, and the upper
right Dini derivative [4] of V satis�es the condition

DV = lim
�t!0

sup
V [x(t+�t)]� V [x(t)]

�t
< 0: (19)

Then, the equilibrium x = 0 is globally asymptotically stable.
The conditions for V (x) = kWxk1 to be a Lyapunov function for the system

_x(t) = Ax(t) can be stated using the logarithmic norm induced by the in�nity
norm. The logarithmic norm �1 of a matrix Q 2 <n�n is de�ned as [9]

�1 = lim
�!0+

kI � �Qk1 � 1

�
(20)

= max
i
fqii +

X
j=1;j 6=i

jqij jg: (21)

Theorem 3. [13] V (x) = kWxk1 is a Lyapunov function for the system _x =
Ax(t) if and only if there exists Q 2 <n�n such that WA � QW = 0 and
�1(Q) < 0.

Corollary 2. [13] If all the eigenvalues �i = �i � �i of the n
th order system

_x = Ax(t) satisfy the condition j�ij � j�ij, then there exists W 2 <n�n with
rankW = n such that the polyhedral set P = fx 2 <n : kWxk1 < 1g is a
positively invariant set for the system.

The above corollary is a consequence of the fact that the matrix equation
WA�QA = 0 has a solution W with rankW = n if and only if the eigenvalues
of A are identical with the eigenvalues of Q [10]. The matrixW can be computed
as the similarity transformation matrix by which A is transformed to the real
Jordan canonical form similar to the discrete-time case.

5.2 Stabilizing Switching Sequences

In this section, we present an approach based on multiple Lyapunov functions
for the stability analysis of the switched system (17). We assume that each indi-
vidual subsystem admits a piecewise linear Lyapunov function described by the
in�nity norm. The main contribution is an eÆcient characterization of a class
of switching laws of the form (2) which guarantee the stability of the system.
Similar results can be developed for more general piecewise linear Lyapunov
functions as in the discrete-time case in Section 4. We assume that each indi-
vidual subsystem admits a positively invariant polyhedral set that contains the
origin which is described by

Pq = fx 2 <n : kW qxk1 < 1g (22)



where W q 2 <n�n. We denote the rows of the matrix W q by w
q
i 2 <n; i =

1; : : : ; n. We consider a class S of switching sequences that are described by
s = (q0; t0); (q1; t1); : : : ; (qj ; tj); : : : ; x(t0) = x0 where tj 2 <

n; j = 0; 1; : : :. It is
assumed that the sequence of switching instants t0; t1; : : : ; tj ; : : : is divergent in
the sense that there are no in�nitely many switchings in a �nite time interval.
Similarly to the discrete-time case, it is assumed that qj 6= qj+1. A sequence s
can be generated by the switching law qj(t

+
j ) = Æ(qj�1(tj); x(tj)); j = 1; 2; : : : :

Proposition 2. Consider a switching sequence s 2 S. If Vqj [x(t
+
j )] � Vqj�1 [x(tj)];

j = 1; 2; : : :, then the switched system _x = Aqx(t) is stable in the sense of Lya-
punov.

Proof. Consider the multiple Lyapunov function de�ned by

V [x(t)] = Vqj [x(t)]; tj < t � tj+1: (23)

Then, we have

DV = lim
�t!0

sup
V [x(t+�t)]� V [x(t)]

�t
� 0: (24)

for every t 2 <n and therefore, the equilibrium x = 0 is stable in the sense of
Lyapunov; see for example [11].

A conic partition of the state space can be used to characterize a class of
switching sequences that satisfy the condition of Proposition 2. Consider a pair
of subsystems with matrices Aq1 and Aq2 . The region 


q2
q1

= fx 2 <n : Vq2(x) �
Vq1(x)g can be computed as a union of �nitely generated cones and can be
computed by the algorithm presented in Section 4 similarly to the discrete-time
case. The class of stabilizing switching sequences is characterized by the following
result.

Theorem 4. Consider the class of switching sequences S de�ned by

qj(t
+
j ) = Æ(qj�1(tj); x(tj)) (25)

x(tj) 2 
qj
qj�1

6= ; (26)

for j = 1; 2; : : :. The switched linear system _x = Aqx(t) is stable in the sense of
Lyapunov for every switching sequence s 2 S.

Proof. Similar to the proof of Theorem 2.

Example 1. Consider the switched discrete-time linear system

_x = Aqx(t); q 2 f1; 2g (27)

where

A1 =

�
1:7 1:8
�4:5 �3:7

�
and A2 =

�
0:7 �1
1:6 �1:7

�
: (28)



The eigenvalues of the matrices A1 and A2 are � = �1� :9j amd � = �:5� :4j.
The real Jordan canonical form can be computed by the following similarity
transformations.

Q1 =W 1A1(W
1)�1 =

�
�1 0:9
�0:9 �1

�
where W 1 =

�
2 1
1 1

�
(29)

and

Q2 =W 2A2(W
2)�1 =

�
�0:5 0:4
�0:4 �0:5

�
where W 2 =

�
�1 1
1 �0:5

�
: (30)

We have that �1(Q1) = �0:1 < 0 and therefore, V1(x) = kW 1xk1 is a
Lyapunov function for the subsystem A1. Similarly, �1(Q2) = �0:1 < 0 and
V2(x) = kW 2xk1 is a Lyapunov function for the subsystem A2. The functions
V1 and V2 correspond to the positively invariant polyhedral sets

P1 = fx 2 <2 : kW 1xk1 � 1g and P2 = fx 2 <2 : kW 2xk1 � 1g (31)

shown in Fig. 3(i).
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Fig. 3. (i) Positively invariant polyhedral sets, (ii) The region 
.

Consider the faces F 1 and F 2 shown in Fig. 3(ii). For every x 2 cone(F 1) \
cone(F 2) we have that V1(x) = hx;w1i and V2(x) = hx;w2i with w1 = [2; 1] and
w2 = [�1; 1] respectively. We consider the halfspace

H2
1 = fx 2 <2 : hx;w2 � w1i � 0g (32)

= fx 2 <2 : x1 � 0g: (33)

Therefore, for every x 2 
 = cone(F 1) \ cone(F 2) [H2
1 we have that V2(x) �

V1(x).
By repeating the procedure for all the pairs of faces for the polytopes P1 and

P2 the we compute the region


q2
q1

= fx 2 <2 : Vq2(x) < Vq1(x)g (34)

= fx 2 <2 : x1 > 0g: (35)



Similarly we have that


q1
q2

= fx 2 <2 : Vq1(x) < Vq2(x)g (36)

= fx 2 <2 : x1 < 0g: (37)

Therefore, for any switching sequence s given by the switching law

q2(t
+) = Æ(q1(t); x(t)) (38)

x(t) 2 
q2
q1

(39)

and

q1(t
+) = Æ(q2(t); x(t)) (40)

x(t) 2 
q1
q2

(41)

the switched system is stable. A stable trajectory is shown in Fig. 4(i).
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Fig. 4. (i) A stable trajectory. (ii) An unstable trajectory.

The characterization of the stabilizing switching sequences is based on suÆ-
cient conditions. Therefore, for a switching sequence s that does not satisfy the
formulated conditions, the switched system is not necessarily unstable. How-
ever, the switched system (27) can generate unstable trajectories as shown in
Fig. 4(ii). An unstable trajectory can be generated by requiring that the system
will keep switching inde�nitely and that the Lyapunov function is increasing at
every switching.

6 Conclusions

In this paper, a class of stabilizing switching sequences for switched linear sys-
tems is characterized by computing conic partitions of the state space. The main
advantage of the approach is that the methodology for computing switching laws
that guarantee stability is based on the parameters of the system and so, trajec-
tories for particular initial conditions do not need to be calculated. Therefore,
the proposed approach can be used very eÆciently to investigate the stability
properties of practical hybrid systems.
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