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Abstract— Heterogeneous sensor networks (HSNs) with multiple
sensing modalities are gaining popularity in diverse fields. In this
paper, we describe an approach for target tracking in urban envi-
ronments utilizing a wireless HSN of mote class devices equipped
with acoustic sensor boards and embedded PCs equipped with
web cameras. Our system uses acoustic beamforming and motion
detection for audio and video sensors, respectively. We also
employ MCMCDA algorithm for data association and tracking.
Experimental results from a deployment in an urban environment
are used to demonstrate our approach.

I. INTRODUCTION

Heterogeneous sensor networks (HSN) with multiple sensing
modalities are gaining popularity in diverse fields because they
can support multiple applications that may require diverse
resources [26]. Multiple sensing modalities provide flexibility
and robustness, however, different sensors may have different
resource requirements in terms of processing, memory, or
bandwidth (e.g., microphones vs. cameras). An HSN can have
nodes with various capabilities for supporting several sensing
tasks.

Multiple-target tracking is one such application that can ben-
efit from multiple sensing modalities. Multiple-target tracking
plays an important role in many areas of engineering such as
surveillance [2], computer vision [7], network and computer
security [8], and sensor networks [19]. If the targets are moving
and emit some kind of sound then both audio and video sensors
can be utilized. These modalities can complement each other in
the presence of high background noise that impairs the audio
or visual clutter affecting the video.

In this paper, we describe an approach for target tracking in
urban environments utilizing an HSN of mote class devices
equipped with acoustic sensor boards and embedded PCs
equipped with web cameras. Our system employs a Markov
Chain Monte Carlo Data Association (MCMCDA) algorithm
[18] for tracking vehicles emitting engine noise. The paper
also describes briefly the components of the system for audio
processing, video processing, and multi-modal sensor fusion.
Experimental results from a deployment in an urban environ-
ment are used to demonstrate our approach.

An overview on acoustic beamforming and its application
for localization in sensor networks can be found in [6].
Beamforming methods have successfully been applied to detect
single or even multiple acoustic sources in noisy and rever-
berant environments [5], [16]. Adaptive background-modeling
methods for motion detection based on video include the
work in [10], which modeled each pixel in a camera scene
by an adaptive parametric mixture model of three Gaussian
distributions and the adaptive nonparametric Gaussian mixture
model to address background modeling challenges presented in
[23]. Other techniques using high-level processing to assist the
background modeling also have been proposed [12], [25]. Work
in multimodal target tracking and multimodal sensor fusion
using audio-video data includes object localization and tracking
based on Kalman filtering [24] as well as particle filtering
approaches [4], [3].

The rest of the paper is organized as follows. The next
section describes the overall system architecture including the
a description of the audio and the video processing approach.
Multimodal sensor fusion is presented in section III. The
multiple-target tracking algorithm is presented in section IV.
Experimental setup and its evaluation is described in Section
V followed by a summary of related work. Finally, we discuss
lessons learned and future directions in section VI.

II. ARCHITECTURE

The architecture of our system is shown in Figure 1. The
HSN consists of audio sensors that perform beamforming and
video sensors that detect moving objects. All nodes are time
synchronized to allow sensor fusion. The sensor fusion node
contains circular buffers that store timestamped measurements.
A sensor fusion scheduler triggers periodically and gener-
ates a fusion timestamp which is used to retrieve the sensor
measurement values from the sensor buffers with timestamps
closest to the generated fusion timestamp. The retrieved sensor
measurement values are then used for multimodal fusion and
estimation and tracking. Next, we briefly describe the main
components of the system.
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Fig. 1. Multimodal tracking system architecture

Audio Beamforming: Beamforming can be used to deter-
mine the direction(s) of arrival and the location(s) of acoustic
source(s) [6], [16]. In our system, the audio sensor node is a
MICAz mote with an onboard Xilinx XC3S1000 FPGA chip
that is used to implement the beamformer. The board supports
four independent analog channels. A small beamforming array
of four microphones arranged in a 10cm× 6cm rectangle was
placed on the sensor node, as shown in Fig. 2. The sources are

Sensor Node

10 cm

6 cm

Fig. 2. Sensor Node Showing the Microphones

assumed to be on the same two-dimensional plane as the micro-
phone array, thus it is sufficient to perform planar beamforming
by dissecting the angular space into M equal angles, providing
a resolution of 360/M degrees. In the experiments, the sensor
boards were configured to perform simple delay-and-sum-type
beamforming in real time with M = 36 beams, and an angular
resolution of 10 degrees per beam.

Motion Detection Using Video: Video tracking systems aim
at detecting moving objects and track their movements in a
complex environment. We use the motion detection algorithm
using the background-foreground segmentation approach de-
scribed in [12], which is based on an adaptive background
mixture model and provides robust performance and low com-
plexity in a wide range of situations. The dataflow in Figure 3
shows the motion detection algorithm and its components. Our
sensor fusion method (Section III) utilizes only the angle of
moving objects, thus we compute a simple detection function
similar to the beam angle concept in audio beamforming. The
detection function value for each beam direction is simply the
number of foreground pixels in that direction. This detection
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Fig. 3. Data-flow diagram of real-time motion detection algorithm

function is similar to the horizontal intensity accumulation
function (IAF) defined in [13]. The top of Fig. 4 shows an
example video detection function. In addition, we implemented
two post-processing filters to improve the detection perfor-
mance to remove undesirable persistent background and sharp
spikes caused by sunlight reflections and glint.

The video sensors are Logitech QuickCam Pro 4000 cameras
attached to OpenBrick-E Linux embedded PCs. The motion
detection algorithm is implemented using the OpenCV library.
Our motion detection algorithm implementation runs at 4
frames-per-second and 320×240 pixel resolution. The number
of beam angles is M = 160.

Time Synchronization: The audio sensors comprise an ad-
hoc 802.15.4 network while the video sensors, the mote-PC
gateway, and the sensor fusion node form an ad-hoc 802.11b
wireless network. In order to fuse audio and video sensor data
for tracking moving objects, all the sensor nodes must have
a common notion of time. Several synchronization protocols
have emerged for wireless sensor networks (e.g. [9], [11]) but
they cannot be applied directly to HSNs. To synchronize the
entire network, we integrated existing protocols that provide
high accuracy and low overhead for a specific network [1]. We
used Elapsed Time on Arrival (ETA) [15] to synchronize the
mote network and RBS [9] to synchronize the PC network.
To synchronize a mote with a PC in software, we adopted
the underlying methodology of ETA and applied it to serial
communication. We evaluated synchronization accuracy using
the pairwise difference method. Two motes timestamped the
arrival of an event beacon, and forwarded the timestamp to the
network sink, via one mote and two PCs. The average error over
the 3-hop HSN was 101.52µs, with a maximum of 1709µs,
which is sufficient for our application.



III. MULTIMODAL SENSOR FUSION

This section describes sensor models and fusion algorithms
for audio and video sensors. We use nonparametric sensor
models for both the audio and video sensors.

Sensor Model: Let λ(θ) denote the detection function (i.e.
acoustic beamform for audio and video detection function for
video) the nonparametric DOA sensor model for a single sensor
is the piecewise linear interpolation

λ(θ) = wλ(θi−1) + (1− w)λ(θi), if θ ∈ [θi−1, θi]

where w = (θi − θ)/(θi − θi−1).
Likelihood Function: A likelihood function of the form

p(z|x) =
1√

2πσ2
exp

(
− (z − θ)2

2σ2

)
for DOA sensors is presented in [17], where θ is calculated
from the geometry of the sound source position x and the sensor
position ζ. The variance σ2 is an empirical function of distance
of the sound source from the sensor. We extended the above
likelihood function by incorporating energy in the empirical
variance. The modified likelihood function for both audio and
video sensor models can be expressed as

p(λ(θ)|x) =
1√

2πσ2
exp

(
− (θpeak − θ)2

2σ2

)
(1)

where θ is calculated from the geometry of the target position
x and the sensor position ζ, θpeak = arg maxλ(θ) is the
peak location closest to θ, λ(θ) is the sensor detection function
described above, and σ2 = f(λ(θ), x) is the variance which is a
function of distance from the sensor and the detection function
value at the cell. Since the sensor models are nonlinear and
nonparametric, it is reasonable to use a nonparametric repre-
sentation for the likelihood functions which are represented as
discrete grids in 2D space. Figure 4 shows an example video
detection function and the corresponding likelihood function.

Fig. 4. An example video detection function and the corresponding likelihood
function

The combined likelihood function from multiple sensors can
be calculated either as the product fusion

p(z|x) =
K∏

k=1

pk(z|x)

or as the weighted-summation fusion

p(z|x) =
K∑

k=1

wk · pk(z|x)

of the individual sensor likelihood functions, where K is the
number of sensors. Since we are using a common likelihood
function for both audio and video modalities, the multimodal
likelihood functions can be combined in a seamless manner.

Using the combined likelihood function of all relevant sen-
sors, we compute target observations, which are used by the
multitarget tracking and data association algorithm described
in the next section (see section IV). The target observations
are generated from the likelihood function using a peak detec-
tion algorithm that detects all the local maxima of the two-
dimensional function.

IV. MULTIPLE-TARGET TRACKING

The essence of the multi-target tracking problem is to find
a track for each object from the noisy measurements. If
the sequence of measurements associated with each object is
known, multi-target tracking reduces to a set of state estimation
problems, for which many efficient algorithms are available.
Unfortunately, the association between measurements and ob-
jects is unknown. The data association problem is to work out
which measurements were generated by which objects; more
precisely, we require a partition of measurements such that each
element of a partition is a collection of measurements generated
by a single object or clutter. Due to this data association
problem, the complexity of the posterior distribution of the
states of objects grows exponentially as time progresses. It
is well-known that the data association problem is NP-hard
[21], so we do not expect to find efficient, exact algorithms for
solving this problem.

In order to handle highly nonlinear and non-Gaussian dynam-
ics and observations, a number of methods based on particle
filters has been recently developed to track multiple objects in
video [20], [14]. Although particle filters are highly effective
in single-target tracking, it is reported that they provide poor
performance in multi-target tracking [14]. This is because a
fixed number of particles is insufficient to represent the poste-
rior distribution with exponentially increasing complexity (due
to the data association problem). As shown in [14], an efficient
alternative is to use Markov chain Monte Carlo (MCMC) to
handle the data association problem in multi-target tracking.

For our problem, there is an additional complexity. We
do not assume the number of objects is known. A single-
scan approach, which updates the posterior based only on the
current scan of measurements, can be used to track an unknown
number of targets with the help of trans-dimensional MCMC
[14] or a detection algorithm [20]. But a single-scan approach



Number of beams in audio beam-
forming, Maudio

36

Number of angles in video detec-
tion Mvideo

160

Sensing region (meters) 25× 20
Cell size (meters) 0.5× 0.5

TABLE I
PARAMETERS USED IN EXPERIMENTAL SETUP

cannot maintain tracks over long periods because it cannot
revisit previous, possibly incorrect, association decisions in the
light of new evidence. This issue can be addressed by using
a multi-scan approach, which updates the posterior based on
both current and past scans of measurements. The well-known
multiple hypothesis tracking (MHT) [22] is a multi-scan tracker,
however, it is not widely used due to its high computational
complexity.

A newly developed algorithm, called Markov chain Monte
Carlo data association (MCMCDA), provides a computationally
desirable alternative to MHT [18]. The simulation study in [18]
showed that MCMCDA was computationally efficient com-
pared to MHT with heuristics (i.e., pruning, gating, clustering,
N-scan-back logic and k-best hypotheses). In this paper, we use
the online version of MCMCDA to track multiple objects in a
2-D plane. Due to the page limitation, we omit the description
of the algorithm in this paper and refer readers to [18].

V. EVALUATION

The deployment of the multi-modal target tracking system
is shown in Figure 5. We employ 6 audio sensors and 6
video sensors deployed on either side of a road. The sensor
network covers a small section of the road in front of a
building shown at the bottom of the figure. It also covers
an entrance/exit to a multi-story garage shown at the top of
the figure by the two-sided arrow. Typically the targets (i.e,
vehicles) move in the direction given by the arrows. The
complex urban street environment presents many challenges
including gradual change of illumination, sunlight reflections
from windows, glints due to cars, high visual clutter due to
swaying trees, high background acoustic noise due to construc-
tion and acoustic multipath effects. The objective of the system
is to automatically detect and track vehicles using both audio
and video under these conditions.

Sensor localization and calibration for both audio and video
sensors is required. In our experimental setup, we manually
place the sensor nodes at marked locations. The camera ori-
entations are manually calibrated by using known landmarks
in the camera field-of-view. The audio sensors are placed on 1
meter high tripods to minimize audio clutter near the ground.

Table I presents the parameter values that we use in our
tracking system. Sensor likelihood functions are calculated by
discretizing the sensing region into the specified cell-sized grid.
The tracked vehicles were part of an uncontrolled experiment.
The vehicles were traveling on road at 15-30 mph speed.

The ground truth is estimated post-facto based on the video
recording by a separate camera. The standalone ground truth

camera was not part of any network, and had the sole respon-
sibility of recording video. For evaluation of tracking accuracy,
the center of mass of the vehicle is considered to be the true
location.

Figure 6 shows the target tracking result for four different
representative vehicle tracks. Tracks 1 and 2 show vehicles
going into and out of the garage. Tracks 3 and 4 show vehicles
going straight on the road.

Fig. 6. Target Tracking

An average target tracking error based on ground truth video
and estimated target tracks is estimated to be 2 meters. The
average tracking error of 2 meters is reasonable considering
the fact that a vehicle is not a point source, and the cell size
used in fusion is 0.5 meters. We should note that the entire
target tracking system works online in real-time at 4Hz. The
average latency for detection is 4 seconds.

VI. CONCLUSIONS

We have developed a multimodal tracking system using
an HSN consisting of six mote audio nodes and six PC
camera nodes. Our system employs an MCMCDA framework
for tracking multiple targets based on fused measurements
from audio beamforming and video motion detection. Time
synchronization across the HSN enables fusion of the sensor
measurements. We have deployed the HSN and evaluated the
performance by tracking moving vehicles in an uncontrolled
urban environment. Fusion of audio and video measurements
can improve the tracking performance. The main direction of
our future work is to improve robustness of the tracking system.
An important challenge toward this direction is addressing
sensor conflict that can degrade the performance of any fusion
method and needs to be carefully considered. Scalability is also
an important aspect that has to be addressed, and we plan to
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Fig. 5. Experimental setup

expand our HSN using additional mote class devices equipped
with cameras.
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