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Abstract: In this paper, we consider the hierarchical control problem for a class
of uncertain hybrid dynamical systems. The continuous dynamics of this class of
uncertain hybrid systems are described by linear difference state equations, whose
right side functions are unknown but lie within some convex hulls of known functions.
Our control objective is for the closed loop system to exhibit a desired behavior
under the dynamic uncertainty, continuous disturbances and uncontrollable events.
One of the main questions is the existence of appropriate controllers. We will focus
on this question here, and present a novel methodology for the analysis of uncertain
piecewise linear hybrid dynamical systems (PLHDS) based on backward reachability
analysis. For this purpose, we derive the predecessor operator for this class of uncertain
PLHDS. Then both static control specifications such as safety and reachability, and
dynamic control specifications are considered. A temperature control system is used
for illustration.
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1. INTRODUCTION

In this paper, a novel methodology for the analysis
of uncertain piecewise linear hybrid dynamical
systems based on backward reachability analysis
is presented. Piecewise linear systems arise as
mathematical models of systems in many practical
applications, often from linearization of nonlin-
ear systems (c.f. (Sontag, 1996; Johansson, 1999;
Koutsoukos, 2000b)). However, for a large class
of systems, like systems with uncertainty or pa-
rameter variations, or systems with strong non-
linearities, parameters variations have to be con-
sidered otherwise the operating vicinity of the
linearization has to be reduced, then increasing
the number of linearizations, which is not prac-

1 The partial support of the National Science Founda-
tion (NSF ECS99-12458 & CCR01-13131), and of the
DARPA/ITO-NEST Program (AF-F30602-01-2-0526) is
gratefully acknowledged.

tical in many cases. Therefore it is important to
study the class of uncertain, or parameter-variant
piecewise linear systems. In (Johansson, 1999),
computational algorithms for the analysis of non-
linear and uncertain dynamical systems based on
the piecewise quadratic Lyapunov functions and
convex optimization are developed. In (Hespanha
et al., 2001), the problem of controlling a poorly
modelled continuous-time linear system is ad-
dressed. The proposed approach is to employ
logic-based switching among a family of candidate
controllers.

The work presented here is an extension of
our group’s recent work in the field of Hier-
archical Control of Hybrid Dynamical Systems
(Koutsoukos and Antsaklis, 2001) 2 . The control
objective of the hierarchical control problem is for

2 It is related to supervisory control framework for hybrid
systems (cf. (Stiver et al., 1996; Raisch and O’Young, 1998;



the closed loop system to follow a desired output
which is assumed to be generated by another
discrete dynamical system. This framework leads
naturally to an input-output representation of the
constituent systems which is analogous to classical
control design. One of the main questions here
is the existence of the appropriate controller. In
this paper we consider uncertain piecewise linear
hybrid dynamical systems described in definition
1, where the continuous dynamics matrix Ãq is
unknown but can be written as a convex com-
bination of known matrices. And a methodology
based on the predecessor operator and backward
reachability analysis (Section 3) for analysis of
such uncertain piecewise linear hybrid dynamical
systems is presented.

The structure of this paper is as follows. Section
2 defines a class of uncertain piecewise linear hy-
brid dynamical systems. Section 3 considers the
predecessor operator and backward reachability
analysis. Section 4 deals with static control spec-
ifications, such as safety and reachability. The
dynamical control specifications are considered
in Section 5, and an example is given. Then we
conclude with some discussion about future work.

2. PROBLEM FORMULATION

In the following, we define a class of piecewise
linear hybrid dynamical systems with uncertainty,
in which the continuous dynamics matrix Ãq is un-
known but can be written as a convex combination
of a finite number of known matrices of proper
dimensions. The discrete dynamics are described
by finite automata, and the interaction between
the continuous and the discrete part is defined by
piecewise linear maps. The exact definition is as
follows.
Definition 1. Consider the Uncertain Piecewise
Linear Hybrid Dynamical Systems (uncertain PL-
HDS) defined by

x(t + 1) = Ãq(t)x(t) + Bq(t)u(t) + Eq(t)d(t) (1)

q(t + 1) = δ(q(t), π(x(t)), σc(t), σu(t)) (2)

y(t) = g(q(t), x(t)) (3)

where x(0) = x0 ∈ X ⊂ R
n; q(0) = q0 ∈ Q, X

and Q stand for the continuous state space and
collection of discrete states (modes) respectively.
u ∈ U ⊂ R

m, d ∈ D ⊂ R
p, and U , D are bounded

polyhedral set. And
• Ãq ∈ R

n×n. The entries in Ãq are unknown, but
Ãq can be expressed as a convex combination of
Nq R

n×n matrices {A1
q, A

2
q, ..., A

Nq
q }, that is

Ãq =
Nq∑
i=1

λiA
i
q, λi ≥ 0,

Nq∑
i=1

λi = 1 (4)

Koutsoukos et al., 2000a)). For the relationship of the two
methods, please see for example (Koutsoukos, 2000b).

• Bq ∈ R
n×m, and Eq ∈ R

n×p are the system
matrices for the discrete state q,
• π : X → X/Eπ partitions the continuous state
space R

n into polyhedral equivalence classes. 3

• q(t + 1) ∈ act(π(x(t))), where act : X/Eπ → 2Q

defines the active mode set,
• δ : Q × X/Eπ × Σc × Σu → Q is the discrete
state transition function. Here σc ∈ Σc denotes
a controllable event and Σu the collection of
uncontrollable events.
• g : Q × X → Y is the output function which is
assumed to be piecewise linear.

Assume that the current discrete state is q and
that q′ ∈ act(π(x(t))) for some state x(t) ∈ R

n,
then q′ is a possible new state, and the transition
q → q′ (or (q, q′)) may occur. The guard G(q, q′)
of the transition (q, q′) is defined as the set of
all states (q, x) such that q′ ∈ act(π(x(t))) and
there exist controllable event σc ∈ Σc such that
q′ = δ(q, π(x), σc, σu) for every uncontrollable
event σu ∈ Σu. The guard of the transition
describes the region of the hybrid state space
where the transition can be forced to take place
independently of the disturbances generated by
the environment.

Remark: For the case of parameter variations,
i.e. Ãq ∈ {Aq ∈ R

n×n : aij ∈ [aij , aij ]}, Ãq can
always be written as convex combination of finite
number 4 of corner matrices, i.e. aij ∈ {aij , aij}.

3. BACKWARD REACHABILITY ANALYSIS

The main mathematical tool to be used for back-
ward reachability analysis is the predecessor oper-
ator applied recursively to subsets of the hybrid
state space. The application of the predecessor
operator corresponds to a partition refinement
into finer partitions that allow the formulation of
conditions that guarantee the existence of appro-
priate controls for the objectives of interest.

3.1 The Predecessor Operator

A region of the state space is defined as R ⊂ Q×
X . We are interested in computing the set of
all the states that can be driven to R by either
continuous or discrete transitions. In the case
of piecewise linear hybrid dynamical systems, it
suffices to assume that the region is represented by
R = (q, P ) where q ∈ Q and P ⊂ R

n is a piecewise
linear set. Please note the fact that piecewise-
linear algebra admits elimination of quantifiers
(Sontag, 1982), which implies that a piecewise
linear set can always be represented by using only

3 This is called as primary partition, which is designed
based on the specifications and the continuous dynamics.
4 Here Nq = 2n2

in general, but if we can represent all
(Aq , Bq) in controller form, then Nq will be reduced to 2n.



linear equalities and inequalities. So let’s assume
that P can be represented by P = {x ∈ R

n|Gx ≤
w} 5 .

The dynamic evolution of the system is defined
by discrete and continuous transitions. We first
define and compute the predecessor operator for
discrete transitions.

Discrete Transitions
The predecessor operator for discrete transitions
is denoted by pred : 2Q×X → 2Q×X and it is used
to compute the set of states that can be driven to
the region R by a discrete instantaneous transition
q′ → q that can be forced by the controller for any
uncontrollable event. The predecessor operator in
this case is defined as follows:

pred(R) = {(q′, x) ∈ Q × X |∃σc ∈ Σc, ∀σu ∈ Σu,

q = δ(q′, x, σc, σu)}
For every discrete transition that can be forced by
a controllable event we have that

pred(R) =
⋃

q′∈act(P )

G(q′, q)

where G(q′, q) is the guard of transition q′ → q.

Continuous Transitions
In the case of continuous transitions, given the
region R = (q, P ) we define the predecessor
operator prec : 2Q×X → 2Q×X to compute the
set of states for which there exists a control input
so that the continuous state will be driven in the
set P for every disturbance, while the system is at
the discrete mode q. The action of the operator is
described by

preq
c(R) = {q} × {x ∈ X |∃u ∈ U , ∀d ∈ D,

∀Ãq ∈ Conv
Nq

i=1(A
i
q), Ãqx + Bqu + Eqd ∈ P}

Computation of the Predecessor Operator
As it was explained above, the predecessor oper-
ator for discrete transitions is given by the union
of the guards of those transitions that are feasible
and can be forced by a control mechanism. Since
the guards are regions of the state space that are
included in the description of the primary parti-
tion, here we concentrate on predecessor operator
for the continuous transitions.

Let’s denote preq
c,i(R) for 1 ≤ i ≤ Nq as

preq
c,i(R) = {q} × {x ∈ X |∃u ∈ U , ∀d ∈ D, Ai

qx +
Bqu + Eqd ∈ P} 6 , and assume that the piece-
wise linear set P = {x ∈ R

n|Gx ≤ w}, where
G ∈ R

v×n, w ∈ R
v. Then, we have a proposition:

5 Here a ≤ b means that all entries in the vector (a − b)
are all non-positive.
6 The preq

c,i(R) is nothing but continuous predecessor set

of the i-th vertex Ai
q .

Proposition 2.

preq
c(R) =

⋂
i=1,...,Nq

preq
c,i(R)

Proof: Firstly, from definition of preq
c(R) it is quite

straight forward to show that

preq
c(R) ⊆

⋂
i=1,...,Nq

preq
c,i(R)

Because for all i = 1, ..., Nq, Ai
q ∈ Co

Nq

i=1(A
i
q),

by definition preq
c(R) ⊆ preq

c,i(R), for all i, so
preq

c(R) ⊆ ⋂
i=1,...,Nq

preq
c,i(R).

On the other hand, for any state (q, x) ∈⋂
i=1,...,Nq

preq
c,i(R), by definition we have

∀d ∈ D, ∀1 ≤ i ≤ Nq, ∃u ∈ U , s.t.

GAi
qx + GBqu + GEqd ≤ w

which is equivalent to

∀d ∈ D, ∀1 ≤ i ≤ Nq, ∀1 ≤ j ≤ v, ∃u ∈ U , s.t.

gT
j Ai

qx + gT
j Bqu + gT

j Eqd ≤ wj

where gT
j denotes the j-th row vector of matrix

G. Consider function of λ = [λ1, λ2, ..., λNq ]T ,
gT

j

∑Nq

i=1(λiA
i
q)x, which is linear in λ and the vari-

able λ is within a closed set, so maxλ(gT
j

∑Nq

i=1(λiA
i
q)x)

is attainable and can only occur at the bound-
ary, i.e. vertex, Ai

q, in this case. That is, for
∀1 ≤ j ≤ v there always exist ij , such that
maxλ(gT

j

∑Nq

i=1(λiA
i
q)x) = gT

j A
ij
q x, so

∀d ∈ D, ∀1 ≤ j ≤ v, ∀λi ∈ [0, 1],
Nq∑
i=1

(λi) = 1, ∃u ∈ U ,

s.t. gT
j

Nq∑
i=1

(λiA
i
q)x + gT

j Bqu + gT
j Eqd

≤ max
λ

(gT
j

Nq∑
i=1

(λiA
i
q)x) + gT

j Bqu + gT
j Eqd

= gT
j Aij

q x + gT
j Bqu + gT

j Eqd ≤ wj

Therefore,

∀d ∈ D, ∀λi ∈ [0, 1],
Nq∑
i=1

(λi) = 1, ∃u ∈ U , s.t.

G

Nq∑
i=1

(λiA
i
q)x + GBqu + GEqd ≤ w

Then, by definition of preq
c(R), we conclude

(q, x) ∈ preq
c(R). Then⋂

i=1,...,Nq

preq
c,i(R) ⊆ preq

c(R)

Then we conclude

preq
c(R) =

⋂
i=1,...,Nq

preq
c,i(R)



Remark: preq
c,i(R) is given by preq

c,i(R) =
proj(S)(Koutsoukos, 2000b; Koutsoukos and Antsak-
lis, 2001) 7 , where S ⊆ X × U is defined as

S = {(x, u)|
∧

j=1,...,v

(gT
j Ai

qx+gT
j Bu ≤ wj−gT

j Ed∗j}

where, d∗j = arg maxd∈D gT
j Ed.

Remark: Please note that preq
c,i(R) is piecewise

linear(PL) and PL set is closed under finite in-
tersection, so

⋂Nq

i=1 preq
c,i(R) is also PL set and

comparably easy to be calculated and efficiently
represented. In the following sections we will de-
rive necessary and sufficient conditions for safety,
reachability and attainability problems based on
this proposition.

3.2 Algorithms for Backward Reachability Analysis
Consider an uncertain PLHDS and a region R =
(q, P ). We denote the partition of the continuous
state space X as {Pi}; i = 1, ...|π|. The following
algorithm computes all the states of the hybrid
system that can be driven to R in one time-step.

Algorithm 1. Predecessor Operator

INPUT: R=(q, P ), S=∅;
for i=1,...,|π|,

Qi = P ∩ Pi

if Qi 6= ∅
for q′ ∈ act(Pi)

Sq′
i = proj(G(q′, q)) ∩ Qi

if Sq′
i 6= ∅

V=R
n

for j=1,...,Nq′

V = V∩proj(preq′
c,j(S

q′
i ))

end
if V6= ∅

S = S∪({q′} × V )
end if

end if
end

end if
end
OUTPUT: pre(R)=S

Remark: Please note that the set pre(R) is
piecewise linear and is described using a finite
set of linear inequalities. Therefore, we can apply
the predecessor operator to compute the set of
all states that can be driven to pre(R) to get
pre(pre(R)). Following the same procedure, we
define successive applications of the predecessor
operator as:

preM (R) = pre(...pre(R))︸ ︷︷ ︸
Mtimes

(5)

7 proj(q × X) = X, This is accomplished efficiently
by Fourier-Motzkin elimination and linear programming
techniques (Motzkin, 1952).

Remark: For a given region R,we define the core-
achable set CR(R) as the set of all states that can
be driven to R. The coreachable set for a region
of the hybrid state space can be computed by
successive application of the predecessor operator

CR(R) = pre∗(R) (6)

In general, the proposed procedure is semi-
decidable and its termination is not guaranteed.
We will return to this matter in the reachability
problem shortly after.

4. SAFETY AND REACHABILITY

Typical control specifications investigated in this
paper are formulated in terms of partitions of the
state space of the system. Examples include safety
problems, where the controller guarantees that the
plant will not enter an unsafe region.

Safety
At first, we focus on the safety problem and
we show how the refinement of the state space
partition can be used to formulated conditions
for safety. Given a set of states described by
the region R ⊂ Q × X and an initial condition
(q0, x0) ∈ R,we say that the system is safe if
(q(t), x(t)) ∈ R for every t ≥ t0. The conditions
that guarantee that a given region of the hybrid
state space is safe can be described as following 8 .

Theorem 3. An uncertain PLHDS is safe with
respect to the region R ⊆ Q × X if and only if
R ⊆ pre(R).

This safety condition can be efficiently tested by
solving a finite number of linear programming
problems that depends on the number of regions
and discrete states of the system.

Reachability
Secondly, we study the reachability problem for
uncertain piecewise linear hybrid dynamical sys-
tems. It should be emphasized that we are inter-
ested only in the case when reachability between
two regions R1 and R2 is defined so that the state
is driven to R2 directly from the region R1 in finite
steps without entering a third region. We only
consider regions of the form R1 = (Q1, P1) and
R2 = (Q2, P2) for which P1 and P2 are adjacent
polyhedral regions of the primary partition. This
is a problem of practical importance in hybrid
systems since it is often desirable to drive the state
to a target region of the state space while satisfy-
ing constraints on the state and input during the
operation of the system.

The problem of deciding whether a region R2

is directly reachable from R1 can be solved by

8 The proof is analogous to proof for the corresponding
theorem on (Koutsoukos and Antsaklis, 2001; Koutsoukos,
2000b).



recursively computing all the states that can be
driven to R2 from R1 using the predecessor op-
erator. As we have discussed, the proposed pro-
cedure is semi-decidable and its termination is
not guaranteed. In order to formulate a construc-
tive algorithm for reachability, we consider two
approaches. First, we consider an upper bound
on the time horizon and we examine the reach-
ability only for the predetermined finite horizon.
Second, we formulate a termination condition for
the reachability algorithm based on a grid-based
approximation of the piecewise linear regions of
the state space (Koutsoukos and Antsaklis, 2001).

Theorem 4. 8Consider an uncertain PLHDS de-
scribed by definition 3 and the regions R1 =
(Q1, P1) and R2 = (Q2, P2). if and only if R1 ⊆
CR(R2) 9 then the region R2 is directly reachable
from R1.

5. EXOSYSTEM AND ATTAINABILITY

In the previous section, we dealt with safety and
reachability. They are called as static specifica-
tions that do not change as time progresses. Here,
we will turn to dynamic specifications that involve
sequencing of events and eventual execution of
actions.

In general, a regulator requests certain types of
outputs from the plant so that these are at-
tained in the presence of disturbances. The desired
outputs can be described as the outputs of an-
other dynamical system, called the exosystem. We
model the control specifications using an input-
output deterministic finite automaton. We are
interested in either static specifications that do
not change as time progresses or dynamic speci-
fications that include, for example, sequencing of
events. The dynamic behavior of the exosystem
is described by the set of output sequences it can
generate.

Dynamic Control Specifications
In this section, we present a modeling formalism
for control specifications based on finite automata
models, and we consider dynamic specifications.
The main advantages of the formal modeling of
the specifications are the following. First, formal
modeling allows to compose complex specifica-
tions from simpler ones. The controller synthe-
sis relies directly on the finite automaton model
of the specifications. Therefore, by putting the
emphasis on the specifications, we can develop a
systematic methodology for controller synthesis.
Finally, the formal models of the specifications are
necessary for simulation and verification tools.

9 CR(R2) can be calculated by CRN (R2) or by grid-based
approximation.

As it was discussed, the primary partition is
designed based on the specifications. We consider
specifications that are described with respect to
regions of the hybrid state space. We define the set
Xe as Xe = {R1, R2, ..., RM} where Ri = (Qi, Pi)
are piecewise linear regions of the hybrid state
space. Since we assume that the primary partition
is fine enough to describe the specifications, for
every region we can write Ri ⊆ Q×X/Eπ. In the
following, we use a formal automaton model to
represent the specifications of interest.

Definition 5. The control specifications are mod-
elled by an input-output (I/O) deterministic finite
automaton described by E = (Xe, Ve, Ye, δe, λe, R0)
whereXe is the set of states, Ve is the input alpha-
bet, Ye is the output alphabet, δe : Xe ×Ve → Xe

is the state transition function, λe : Xe → Ye is
the output function returning the output associ-
ated with each state, and R0 is the initial state.

We assume that the function δe is non-total, which
means that not every input can be applied to
every state of the automaton. We also assume
that every state is reachable and therefore, there
exists appropriate input sequences so that every
state can be reached. The I/O finite automaton
which describes the specifications is a determinis-
tic Moore automaton and is called the exosystem.

Attainability
Our control objective is that the closed loop
system consisting of the plant and the controller
exhibits the same behavior as the exosystem. And
the main question is if there exists a controller so
that the closed loop system follows the behavior
of the exosystem. We formalize this notion using
the attainability of the specified behavior. In the
following we present the necessary and sufficient
condition for attainability. In this work, attainable
behavior refers to behavior that can be forced to
the plant by a control mechanism.

Theorem 6. (Koutsoukos and Antsaklis, 2001)
The specification behavior Bsp is attainable if and
only if the following conditions hold:
First, Every terminating state yn corresponds to a
region Rnthat is safe; and secondly for every non-
terminating state yk, there exists yk+1 so that,
for the corresponding regions we have that Rk+1

is reachable from Rk.
Furthermore, if Bsp is attainable then there exists
a controller C so that the regulator problem has a
solution.

To illustrate the idea, We present a temperature
control system as an example (Koutsoukos and
Antsaklis, 2001).

Example 7. (Temperature Control System).
The system consists of a furnace that can be
switched on and off. The control objective is to
control the temperature at a point of the system
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Fig. 1. Illustration for the predecessor set preq1
c (R2).

by applying the heat input at a different point. So,
the discrete mode only contains two states, that is
the furnace “off”,q0, and the furnace is “on”, q1.
The continuous dynamics is described as 10

x(t + 1) =
{

Ã0x(t) + B0u(t) + E0d(t), q = q0

Ã1x(t) + B1u(t) + E1d(t), q = q1.

where

A1
0 =

(
0.825 0.135
0.68 1

)
, A2

0 =
(

1 0.35
0.068 0.555

)

B0 =
(

1.8179
0.0773

)
, E0 =

(
0.0387
0.3772

)

A1
1 =

(−0.664 0.199
0.199 0.264

)
, A2

1 =
(−0.7 0.32

0.32 0.44

)

B1 =
(

0.8101
0.1369

)
, E1 =

(
0.1369
0.5363

)

The partition of the state space is obtained by
considering the following hyperplane

h1(x) = x1 − 20, h2(x) = x2 − 5,

h3(x) = x2, h4(x) = x1

Consider region R1 = ({q0, q1}, P1) and R2 =
({q0, q1}, P2), where P1 = {x ∈ R

2|(0 ≤ x1 ≤
20) ∧ (−20 ≤ x2 ≤ 0)}, and P2 = {x ∈ R

2|(0 ≤
x1 ≤ 20) ∧ (0 ≤ x2 ≤ 5)}. Our control object is
that for every initial sate (q0, x0) within region
R1 there exist control u ∈ U and σc ∈ Σc so
that from (q0, x0) the state can be driven to R2

without entering a third region, then the state will
stay inside R2

11 , no matter what the dynamic
uncertainty, continuous and discrete disturbances
are. Let’s check the attainability. We first calculate
pre(R2), which cover the region R2, so R2 is safe.
By recursively using pre(.), we find that R1 can
be driven to R2 in three steps, i.e. reachable. So
the attainability of the specification is satisfied.
The figure 1 plot the predecessor set preq1

c (R2)
for illustration.

6. CONCLUSION
In this paper, we consider hierarchical control
for a class of uncertain piecewise linear hybrid

10using zero-order hold sampling with T = 1s.
11Of cause we can build an automata, exosystem, to
describe such simple specification.

dynamical systems. The existence of a controller
such that the closed loop systems follow desired
output of exosystem under uncertainty and dis-
turbance is considered. The proof of the controller
existence (Koutsoukos, 2000b; Koutsoukos and
Antsaklis, 2001) also gives a constructive way for
the regulator design. Often, we are also interested
in the real-time behavior of a system. For example,
we may require that each component is assembled
in a manufacturing system in less than 1 min.
Real-time specifications can be incorporated into
the framework by including explicitly timers in
the model of the plant. The timers can be in-
cluded either in the continuous part using linear
oscillators or in the discrete part using finite state
machine models.
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