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Abstract

In this paper we propose a novel automaton-based ar-
chitecture to build a diagnoser, based on which an efficient
distributed diagnostic method consisting of local computa-
tion and communication is presented. The method proposed
here is highly scalable and robust to partial failures of the
overall diagnoser.

1. Introduction

The objective of diagnosis is to determine the state of
a physical plant such as a printer or aircraft based upon
current sensor readings from the plant and prior knowledge
about the plant’s structure and behavior. In order for the
diagnosis to be useful for on-line control of the plant,
diagnoses must be generated in a time-critical manner
using limited computational resources. Most model-based
diagnostic approaches for qualitative systems are cen-
tralized, e.g. [7] [6] [10] [2]. A centralized diagnoser
stores a model of the entire plant, receives all sensor
observations and executes a diagnosis algorithm. It has
three main disadvantages: (1) high spatial complexity - its
state set is usually the product of components’ state sets;
(2) weak robustness - any failure occurring somewhere
inside the diagnoser could crash the whole diagnoser; (3)
poor scalability - any structural change in the target system,
e.g. adding new components, removing components or
changing some input/output connections, might force us to
build a completely new diagnoser.

To address these problems, attention has recently been
directed to decentralized methods, e.g. [3] [8]. In [3] local
diagnosers communicate with a coordination process which
acts like a centralized unit, hence it still encounters the
scalability and robustness problems. In [8] a decentralized
diagnoser is built from a centralized diagnoser, which has
high spatial complexity in the diagnoser construction stage.
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In [1] a ditributed method is presented which doesn’t re-
quire coordination and each local diagnoser communicates
directly with other diagnosers. But the structure of its
local models makes the local diagnosis and communication
extremely complicated, bringing temporal complexity to
the fore. In this paper we propose a new automaton-based
distributed diagnosis method. In this method each local
component has its own local diagnoser, which is built
based only on knowledge about this component. The stored
size of the overall diagnoser is only the sum of state sizes
of the local diagnosers, hence spatial complexity is kept
under control. Each local diagnoser is connected with other
local diagnosers based on the input/output relations among
associated local components. Adding new components,
taking components out of the system or changing the
input/output relation among local components only affects
the local diagnosers that are directly associated with the
altered components. So high scalability of the overall
diagnoser can be achieved. The local diagnosis in each
local diagnoser is based mainly on its local observation,
and communication is only used for refinement purposes.
So if some local diagnoser or communication channel
failed, other normal local diagnosers could still produce
local diagnoses and refine them based on communication
via undamaged communication channels. Thus the overall
diagnoser is robust to partial diagnoser failure.

This paper is organized as follows. In Section 2 we pro-
vide technical details. In Section 3 we demonstrate its ef-
ficiency on a real-world example, and draw conclusions in
Section 4.

2 Distributed diagnosis - technical details
2.1 Basic conceptsand assumptions
A qualitative (non-numerical) component model en-

coded as a set of logical constraints has long been used in
diagnosis, e.g. [2] [5]. In this spirit we model the transition



structure of each local diagnoser. Let I = {1,---,n} C N
be an index set.

Definition 2.1 A qualitative diagnostic system D is a set of
finite automata

D ={G; = (Xy, X4, &, Xpi, wo)|i € I}

where X is the state set, ¥; the event set, Xr; C X, the
fault event set, x( the initial state, &; : X; x 3; — X the
(partial) transition function. G; is a local qualitative model
of the diagnostic system.

Figure 1 depicts a simple paper-path system (SPPS) and its
qualitative diagnostic system. In this system the motor de-
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Figure 1. A Simple Paper-Path System

livers drive w to both rolls. Thus the models describing the
Motor and the two rolls all share the variable w. Roll; pulls
a sheet of paper into the paper path and pushes it onto Roll,.
Roll, then grasps the sheet and pushes until it is out of the
paper path. The variable ¢ shared by Roll; and Roll, rep-
resents the time when Roll; pushes a piece of paper onto
Roll,. The sensor will detect the arrival of the leading edge
of a piece of paper at the exit end of the paper path and
set the time of that occurrence within the model for Roll..
In (SPPS), Motor could be normal, slow or breakdown and
the corresponding velocity output w could be nominal, slow
or zero. Hence we can develop a local qualitative model
for Motor as shown in Figure 2(a). In Figure 2(b) Roll; re-
ceives drive w from Motor and sends an output ¢ (the leading
edge arrival time at the entrance of Roll;) to Roll,. Roll;
could be normal or high-friction. Considering the effect of
w, its qualitative output ¢ could be nominal, late or infinite,
where the latter means that ¢ exceeds a pre-defined maxi-
mum waiting time. In Figure 2(c) Roll, has a similar transi-
tion model except that it contains sensor information leAtS,
a variable denoting “leading edge arrival time at sensor S”.
This can take three qualitative values: nominal, late and in-
finite, with an interpretation similar to that in Roll;. Each
assignment is explicitly represented by an event. So we
have three observable events associated with sensor read-
ings: leAtS=nominal, leAtS=late and leAtS=infinite. All
other events are unobservable.

For each i € I the local (partial) transition function &; can
be extended as &; : X; x £ — X; (see [9]). Let
L(Gi) := {s € E}&i(x0,5)'}

normal, @=nominal normal, t=nominal

© w=nominal
¢ slow o w=slow o w=slow normal,
high_friction,
normal, t=infinite
reakdown - w=zero .
breakdown, w=zero ) ‘infinite

Figure 2. Motor (a), Roll; (b) and Roll; (c)

Definition 2.2 The qualitative diagnostic system D is finite
if (Vi € I)|L(G;)| < 0.

Assumption 1: D is finite.

Foreachi € I let ¥,,,; C X; be the set of observable
events. Bring in the natural projections P;; : X7 — X7,
Piobs + X7 = X3, ;i Pir 0 X7 — X5, e is the empty

string and o € s means the event o appears in the string s.

A system usually repeats a pre-defined function, e.g. a
printer repetitively does single-side printing until the user
switches the work mode to double-side printing or turns off
the machine. The duration of each instantiation of the pre-
defined function is a work cycle. In the rest of the paper, all
definitions and procedures are for one work cycle. Call

S = {{s,» € L(Gy)Ji € I}|(¥i,j € I)Pyj(s:) = Pji(sj)}

the state set of D and S = {s; € L(G;)|i € I} € S a state
of D. Given 5,5' € S,5 < 8" < {s; < sj]i € I} and
S<S <= S<SAS#S.

Definition 2.3 Alist T}, = (S1,-- -, Sk) is ak-trajectory of
Dif(Vi,j:1<4,j<k)i<j=5; <5

In SPPS the state So = {syr = €,sr, = €,5r, = €} means
that no component in SPPS has as yet fired any string.
The state S; = {sy = (normaly),sgr, = €,5p, = €}
means Motor fires a string normal; and the other two
are still idle. The state So = {sy = (normal;)(w =
nominal),sg, = (w = nominal),sr, = €} means that
Motor fires a string (normaly ) (w = nominal), Roll; fires
a string w = nominal and Roll, is still idle. By Def. 2.3
(So, S1,.52) forms a 3-trajectory of SPPS. We write S € T
to mean that the state S appears in 7". In a work cycle, at
each time instant there is a trajectory describing the transi-
tion behavior of D between the starting time instant of the
work cycle and the current time instant. Let 75 be the set



of all possible trajectories of D at the end of the work cycle.
Next we describe how to use D to fulfil diagnostic tasks.

2.2 Local computation and communication

One of the main objectives of fault diagnosis is to ap-
praise the fault status of the associated component. An ap-
praisal must be based on an estimate of the transition behav-
ior of this component just before the time when a decision
is made. First we give a formal description of “estimate”.
Letalanguage L := {s; € X7, ;|i € I} represent our ob-
servation about D. s; # e means there is observation in G;;
otherwise there is no local observation in G;.

Definition 2.4 Let D be the diagnostic system. Given a lan-
guage L = {s; € X}, ;|i € I}, and collections of languages
E={ECLG)|iel}and & ={E CL(Gi)|i e I}, isan
estimate about D with respect to £ and L if

1. (V’L S I)EZ - {SSI S L(GZ)|S € E; N Pi’obs(sl) = Sz}
2. (Vi,j € IPi;(E;) = Pji(Ej)
L is called a constraint and £ is called prior knowledge.

By Def. 2.4 we see that for each i € I: (1) E; is “evolved”
from prior knowledge E; and extended with new infor-
mation from the constraint L - the set of newly obtained
observations (Condition 1); (2) All local estimates are
consistent (Condition 2).

Let I'(D, &, L) be the set of all estimates about D with re-
spectto £ and L. £ = {E;|i € I} € I'(D,&,L) is the
supremal estimate in I'(D, &, L) (written SupI'(D, £, L)) if

(V&' .= {Elli € I} € T(D,E,L))(Vi € ) E; C E;

Note that if & = {E}|i € I}, & = {Ef|i € I} arein
[(D,&,L),s0is & = {E} UE?|i € I}. Hence the supre-
mal estimate exists. In SPPS suppose
€ ={Em ={e},Er, = {e},Er, = {e}}

and L = {syr = €,5p, = €,5Rr, = (leAtS = late)}. Then
the result SupI'(D, &, L) is displayed in Figure 3, where
Enotor = {811,812}, Erou, = {821,822, 823, 824} and
Erotr, := {831, S32, 833, 834, 835 }.

Computation procedure for the supremal estimate &:
(1) Initialization: for eachi € I,

Ei = {SS’ € L(GZ)|S € E; N Pi7obs(sl) = Sz}

(2) Communication: To each G; (¢ € I) continuously ap-
ply the following operations until Termination-Condition
is satisfied.

e send message: foreach j € I withX; N X; # @, send
P;;(E;) to G; as a message.

Figure 3. Supremal Estimate in SPPS

o local update: if a message P;;(E;) from G; is received
then make the new assignment

Ei =P (Pi(E))) NE; 1)
The Termination-Condition (TC) is

(Vi € I)(Vj € I)E; = P (Pi(E;) NE
Due to limited space, in this paper we cannot describe de-
tails of our communication protocol which is used to verify
TC. The general idea is that each communication process is
divided into several rounds, in each of which all communi-
cation occurs in one direction, either “upstream” or “down-
stream”. When each local diagnoser sends out messages
to other diagnosers, it puts a tag in the message indicating
whether it has reached a fixed point or not. Other local diag-
nosers will use this tag to determine when to terminate the
communication. Interested readers can contact the authors
for more details about the communication protocols. Figure
4 demonstrates one round of communication in SPPS. In
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Forward {®w=nominal, o=slow}
to Roll,.
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_ Forward {®w=nominal, ®=slow}
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w=nominal

Forward {t=nominal, t=late}
to Roll,.

Roll, (stable)

high_friction, t=late

normal, t=late

high_friction, t=late

Figure 4. Communication in SPPS

the local update operation suppose Ej represents E; on the
right-hand side of (1) and E- represents E; on the left-hand

side. If E; # E7 then the local update operation is called an
effective local update.



Proposition 2.1 TC is satisfied in a finite number of effec-
tive local updates.

Proposition 2.2 When TC is satisfied, we have
E ={Eili € I} = Supl'(D, &, L)
Foreachi € I let
R; 2L 5P, p(L(Gy)) : W Ry(W) =Py (W)

be the local fault report map on G;. Each u € R;(W) isa
fault candidate. In the following proposition, for each state
S; € S we write s! to mean that s? € L(G;) N S;.

Proposition 2.3 Leti € I, fault event oy € Xp;, and tra-
jectory T' € Tp. Suppose there exists a state S; € 1" with
oy € s]. Forany state S, € T with S; < S,, let the con-
straint be L := {Py os(s})|k € I} # {e} and the prior
knowledge be & := {{e}}. Then we have

(3E; C L(Gi))E; € Supl'(D, o, L) A (3p € Ri(Ei)) o € p

Prop. 2.3 tells us that in any trajectory, if a fault “oc-
curs” then it can be “reported” at any later state in the
trajectory which contains at least one new observation.
Each fault report R;(E;) contains several fault candidates.
It is quite possible that not all fault candidates contain
the occurred fault. Hence in many cases we may not
be able to determine the occurrence of the occurred
fault without ambiguity. For example in SPPS when
the computation and communication process terminates,
Motor will report {normal;, slow;}, which means the
fault status of the Motor is either normal or slow. Both
of them are consistent with the observation. Roll; will
report {normals, high_friction,} and Rolly will report
{normals, high_frictions}. None of them can be used to
determine the true fault uniquely. Such ambiguity is caused
by the lack of global view in local diagnosis (and also the
lack of sufficient local observation). In some sense local
diagnosis is better served as a preprocessing procedure,
which rules out a lot of impossible solutions before more
advanced but quite resource-consuming diagnosis tech-
niques are applied.

In practical situations observations are usually obtained cu-
mulatively. For example a local component could receive
an observation at time instant ¢;, then receive another one
att, > t1, and so on. The local component buffers these lo-
cal observations according to the order in which they were
received. This process is called observation accumulation.
There are two ways to use these observations: (1) in one-
stage diagnosis all previously used observations have to be
remembered (Prop. 2.3 describes the diagnostic capability
of this type of method); (2) in multi-stage diagnosis all pre-
viously used observations are erased from memory and only

newly obtained observations are used to update estimates.
In many practical situations a multi-stage diagnosis method
is preferable to a one-stage method. So now we describe it

in detail. Let £ := {{si ex* i€ I}} be the set of all

obs,i
constraintsand x : £x £ — L be the observation catenation
map such that for each pair of constraints Ly = {s; 1|i € I}
and Ly = {S¢72|’L' S I}, L; xLsg := {S¢718i72|i S I}

Definition 2.5 Given constraints Ly = {s;1|i € I} € L,
Ly = {s;2]i € I} € L, Ly is reasonably related to L; if for
each & = {E;|i € I} € T(D, {{e}}, L1 x L), there exists

& ={E; CL(G)|(Vs; €E;)(3s; €E}) si < si AN €T}

such that &' € T'(D,{{e}},L1). A list of constraints
[Li,---, Ly ] isan observation chain if

m > 2= (Vj:2<j<m)L; is reasonably related to
Ll‘k'-"kl_jfl.

In SPPS suppose we can also measure ¢, namely ¢t =
nominal,t = late and t = in finity are observable events
in both Roll; and Roll;. Then we can check that given two
constraints

Li = {sm =¢€5r, =€ 5r, = (t =late)}
Lo = {sm =¢,sr, = (t=Ilate),sr, = (leAtS = late)}

L, is not reasonably related to Ly, because for each £ €
(D, {{e}}, L1 * Lo), there doesn’t exist the £’ required in
Def. 2.5. An intuitive reason is that, in L; sp, = ¢ means
that the paper in Roll; hasn’t been sent to Roll; yet. But on
the other hand sr, = (¢ = late) means Roll, has received
a paper from Roll;. Hence in the constraint L,, the two ob-
servations sg, = eand sg, = (t = late) are not consistent.
IfletL; = {sy =€, sr, = (t = late), sg, = (t = late)},
then L is reasonably related to L. The following proposi-
tion describes the relationship between one-stage diagnosis
and multi-stage diagnosis.

Proposition 2.4 Given constraints Ly, L, € £ and prior
knowledge & := {{e}}, if Ly is reasonably related to L,
then, SUpF(D, 50; L % Lg) = SUpF(D, SUpF(D, 80; Ll), Lz)

A local diagnoser ID; consists of the local qualitative model
G, an estimate E; C L(G;), a local fault report map R;,
and a communication protocol C; which is not defined in
this paper, namely ; = (G;, E;, R;, C;). Suppose the du-
ration of each work cycle is (0, ] C R*, where R* denotes
the non-negative real numbers. The work cycle is divided
into m time subintervals (to,t1], (t1,%2],- -, (bm—1, tim)
with tg = 0 and ¢,,, = t. There is a global clock available
to each local diagnoser for synchronizing their communi-
cation. In each time subinterval (¢;_1,¢;] (j = 1,---,m),
each local diagnoser ); (i € I) buffers observable events,
which are received in (¢;_1,t;]. Suppose at ¢; the observ-
able events received by I; forms a string s;;, € X

obs,i?



where the order of events in s;,, is the temporal order
of their being received. If at the current time subinterval

there is no observation received then s;,, = ¢;. Let
Le; i= {804, € Xy, ili € 1}

Assumption 2: [Ly,,---, L, ] isan observation chain.

Distributed Diagnosis Procedure:
1. Initialization: At ¢y set the initial estimate of each ID;
(i € )t EY := {e}.

2. Diagnosis: In each (¢;_1,t;] (j = 1,---,m), if
Le, = {e} then for each i € I, set E/ := E/ " and go
to the next time subinterval; otherwise do the following
operations (2.1-2.2) at ¢;.

2.1 Construct prior knowledge &, , := {El Yiery.

2.2 Compute &, = SupI'(D, &;,_,, Ly,). At this stage each
local diagnoser ID; (i € I) needs to use its communication
protocol to support communication with other local diag-
nosers. R;(E7) is the local diagnosis in D; at ¢;.

The above multi-stage distributed diagnosis procedure es-
sentially calculates

gto =

{{e}}
Supl'(D, &;_,, Ly;)

By Prop. 2.4 it is equivalent to a one-stage diagnosis proce-
dure (V] 1< < m) gtj = SUpF(D,Eo, Lt1 * ek I—tj)-
In reality if the trajectory of D at the end of the work cycle
tm i8S Ty, = {S1, -+, Sk} € Tp, then

Lt1 * -k Ltm = {Pi’obs(sfﬂi c I}

Hence by Prop. 2.3, if any fault occurs during the trajectory
Ty then the distributed diagnosis procedure will “report” it
in the same work cycle. Finally the relationship between
local diagnosis and global diagnosis is described as follows.

Definition 2.6 Given a supremal estimate £ = {E;|i € I}
of D, a set of strings Q = {s; € E;|i € I} is a global
estimate of D if (Vs;, s; € Q) Py (s;) = Pji(s;). The asso-
ciated fault candidate set of ), F = {R;({s;})|i € I} isa
global diagnosis of D.

In words, a set of fault candidates is a global diagnosis if
there exists a set of consistent strings, each of which is from
a unique local diagnoser, such that each fault candidate is
contained in exactly one string. A global diagnosis is a
global perspective of the fault status of the whole system.
Computing the set of all global estimates is NP-hard.

3 Test results

Figure 5 is a schematic depiction of a paper path model
for the Xerox DC265ST printer, consisting of 24 compo-
nents. There are 5 sensors labelled S,,---,Ss. Each sen-
sor is used to record the leading-edge arrival time and the
trailing-edge arrival time of each piece of paper. There are
three motors in the system that transfer drives to rolls via
gears, belts and clutches. Each box represents the model
of a single paper path component’s local behavior, includ-
ing possible failures. Arrows indicate interaction between
components.
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Figure 5. DC265ST Printer Model

Table 1 gives some possible fault scenarios in the pa-
per path model for the Xerox DC265ST printer (displayed
in Figure 5) and the corresponding local diagnoses, where
“N : normal”, “W : wornout” and “N, W : 14” means
component 14 is either normal or wornout. The CPU
of the computer for the following computation was a PIlII
750MHz and the computation time for the local diagnosis
in each row was less than 10~ sec.

Table 1
Sensor Readings Local Diagnoses
Order | Detailed Readings
1 leAtS1=normal N:0,1,2,3,4
2 teAtS1=normal N: 5,6
3 leAtS2=normal N:5,6,7,8,9,10
4 teAtS2=normal N:5,12,13
5 leAtS3=late N:5,12,13
N, W: 14,15,16,17

6 teAtS3=late N, W: 14,18,19
7 leAtS4=late N, W: 14,18,19

Table 1 can be interpreted as follows: after the first
observation leAtS1 = normal is obtained from sensor Sy,
local diagnosers Gy, - - -, G4 report their local diagnoses as
normal. After the second observation te AtS1 = normal
is obtained, local diagnosers Gs and Gg report their local
diagnoses as normal and so on. From Table 1 we can
conclude that based on seven sensor readings, components



0,---,13 are normal and components 14,---,19 are
either normal or wornout.

Table 2 shows the results of comparison between our
method and L2, a centralized method developed by NASA
Ames Research Center [4]. Although both methods pro-
duce global diagnoses, our method will find all consistent
fault candidates, each of which will cover the fault status of
all participating local components. L2 is designed to find
all minimum-fault candidates that can explain the current
observation discrepancy. Hence in the same fault scenario
L2 will have a smaller search space than does our method.
It is still a good benchmark to evaluate the performance of
our method compared with a centralized method.

Table 2
No. Sensor Readings NPLD NGD CT (s)
Distr. Centr.

1 LS1=l, TS1=l 9 21/6 0 0.02
2 LS1=l, TS1=l, LS2=I, TS2=1 14 49/12 0 0.18
3 LS1=l, TS1=I, LS2=I, TS2=I, LS3=l, TS3=I 20 343/84 0.05 13.28
4 LS1=l, TS1=l, LS2=], TS2=l, LS34,

TS3=, LSA=l, TSA=1 21 343/84 0.06 19.63
5 LS1=l, TS1=l, LS2=, TS2=l, LS3=1, TS3=l,

LSA=|, TSA=I, LS5=, TS5= 24 637/108 0.22 27.08

In Table 2 “LS1=I" means the leading-edge arrival time at
sensor S; is late, “TS1=I" means the trailing-edge arrives
late at sensor S1, “NPLD” is an abbreviation for the Num-
ber of Participating Local Diagnosers, “CT” is the Compu-
tation Time and “Distr.”, “Centr.” mean distributed and
centralized respectively. “NGD” is the Number of Global
Diagnoses. In the column of NGD the number 21/6 means
that the distributed method generates 21 global diagnoses
and L2 generates 6 global diagnoses. The difference results
because L2 only searches minimum-fault global diagnoses
but our method searches all global diagnoses. We have
checked that all fault candidates found by L2 are contained
in the set of fault candidates generated by our method. Table
2 indicates that as far as the global diagnosis is concerned,
our proposed automaton-based method is much more effi-
cient for this problem than a centralized method.

4 Conclusion

In this paper we present a methodology for on-line
distributed fault diagnosis. We use automata to model
local diagnosers and use an on-line efficient local compu-
tation and communication approach to produce the local
diagnosis in each local diagnoser. Although the local
space complexity is increased due to the pre-compilation
of the local diagnosers, the total spatial complexity of
the whole system is still manageable due to the purely
distributed architecture. The novel local computation and
communication approach proposed is highly scalable and
also robust to failures of local diagnosers. Hence it is
suitable for fault diagnosis for large-scale systems. There

are still several problems to be further investigated, e.g.
how to incorporate probability into a transition model, how
to efficiently determine the fault probability distribution
when the communication terminates, how to determine the
most likely fault in an efficient way, and how to find an
optimal distributed structure which has the best tradeoff
between spatial complexity and temporal complexity.
These problems will be addressed in future papers.
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